Making use of Newton’s classical shell theorem, the Schwarzschild metric is modified. This removes the singularity at r = 0 for a standard object (not a black hole). It is demonstrated how general relativity evidentl...Making use of Newton’s classical shell theorem, the Schwarzschild metric is modified. This removes the singularity at r = 0 for a standard object (not a black hole). It is demonstrated how general relativity evidently leads to quantization of space-time. Both classical and quantum mechanical limits on density give the same result. Based on Planck’s length and the assumption that density must have an upper limit, we conclude that the lower limit of the classical gravitation theory by Einstein is related to the Planck length, which is a quantum phenomenon posed by dimensional analysis of the universal constants. The Ricci tensor is considered under extreme densities (where Kretschmann invariant = 0) and a solution is considered for both outside and inside the object. Therefore, classical relativity and the relationship between the universal constants lead to quantization of space. A gedanken experiment of light passing through an extremely dense object is considered, which will allow for evaluation of the theory.展开更多
The nanoscale confinement is of great important for the industrial applications of molecular sieve,desalination,and also essential in bio-logical transport systems.Massive efforts have been devoted to the influence of...The nanoscale confinement is of great important for the industrial applications of molecular sieve,desalination,and also essential in bio-logical transport systems.Massive efforts have been devoted to the influence of restricted spaces on the properties of confined fluids.However,the situation of channel-wall is crucial but attracts less attention and remains unknown.To fundamentally understand the mechanism of channel-walls in nanoconfinement,we investigated the interaction between the counter-force of the liquid and interlamellar spacing of nanochannel walls by considering the effect of both spatial confinement and surface wettability.The results reveal that the nanochannel stables at only a few discrete spacing states when its confinement is within 1.4 nm.The quantized interlayer spacing is attributed to water molecules becoming laminated structures,and the stable states are corresponding to the monolayer,bilayer and trilayer water configurations,respectively.The results can potentially help to understand the characterized interlayers spacing of graphene oxide membrane in water.Our findings are hold great promise in design of ion filtration membrane and artificial water/ion channels.展开更多
An extension of Shrödinger’s quantization on the space (x, p), where the Hamiltonian approach is needed, is made on the space (x, v) where the Hamiltonian approach is not needed at all. The purpose of this p...An extension of Shrödinger’s quantization on the space (x, p), where the Hamiltonian approach is needed, is made on the space (x, v) where the Hamiltonian approach is not needed at all. The purpose of this paper is to give a possible extension of the actual formulation of the Quantum Mechanics, and this is achieved through a function K(x, v, t) which takes the place of the Hamiltonian on the Shrödinger’s equation and has units of energy. This approach allows us to include the quantization of classical velocity depending problems (dissipative) and position depending mass variation problems. Some examples are given.展开更多
文摘Making use of Newton’s classical shell theorem, the Schwarzschild metric is modified. This removes the singularity at r = 0 for a standard object (not a black hole). It is demonstrated how general relativity evidently leads to quantization of space-time. Both classical and quantum mechanical limits on density give the same result. Based on Planck’s length and the assumption that density must have an upper limit, we conclude that the lower limit of the classical gravitation theory by Einstein is related to the Planck length, which is a quantum phenomenon posed by dimensional analysis of the universal constants. The Ricci tensor is considered under extreme densities (where Kretschmann invariant = 0) and a solution is considered for both outside and inside the object. Therefore, classical relativity and the relationship between the universal constants lead to quantization of space. A gedanken experiment of light passing through an extremely dense object is considered, which will allow for evaluation of the theory.
基金support from the National Natural Science Foundation of China(Grant Nos.12372327,12372109,11972171)National Key R&D Program of China(Grant No.2023YFB4605101).
文摘The nanoscale confinement is of great important for the industrial applications of molecular sieve,desalination,and also essential in bio-logical transport systems.Massive efforts have been devoted to the influence of restricted spaces on the properties of confined fluids.However,the situation of channel-wall is crucial but attracts less attention and remains unknown.To fundamentally understand the mechanism of channel-walls in nanoconfinement,we investigated the interaction between the counter-force of the liquid and interlamellar spacing of nanochannel walls by considering the effect of both spatial confinement and surface wettability.The results reveal that the nanochannel stables at only a few discrete spacing states when its confinement is within 1.4 nm.The quantized interlayer spacing is attributed to water molecules becoming laminated structures,and the stable states are corresponding to the monolayer,bilayer and trilayer water configurations,respectively.The results can potentially help to understand the characterized interlayers spacing of graphene oxide membrane in water.Our findings are hold great promise in design of ion filtration membrane and artificial water/ion channels.
文摘An extension of Shrödinger’s quantization on the space (x, p), where the Hamiltonian approach is needed, is made on the space (x, v) where the Hamiltonian approach is not needed at all. The purpose of this paper is to give a possible extension of the actual formulation of the Quantum Mechanics, and this is achieved through a function K(x, v, t) which takes the place of the Hamiltonian on the Shrödinger’s equation and has units of energy. This approach allows us to include the quantization of classical velocity depending problems (dissipative) and position depending mass variation problems. Some examples are given.