A prototype space-based cloud radar has been a precipitation system over Tianjin, China in July developed and was installed on an airplane to observe 2010. Ground-based S-band and Ka-band radars were used to examine t...A prototype space-based cloud radar has been a precipitation system over Tianjin, China in July developed and was installed on an airplane to observe 2010. Ground-based S-band and Ka-band radars were used to examine the observational capability of the prototype. A cross-comparison algorithm between different wavelengths, spatial resolutions and platform radars is presented. The reflectivity biases, correlation coefficients and standard deviations between the radars are analyzed. The equivalent reflectivity bias between the S- and Ka-band radars were simulated with a given raindrop size distribution. The results indicated that reflectivity bias between the S- and Ka-band radars due to scattering properties was less than 5 dB, and for weak precipitation the bias was negligible. The prototype space-based cloud radar was able to measure a reasonable vertical profile of reflectivity, but the reflectivity below an altitude of 1.5 km above ground level was obscured by ground clutter. The measured refiectivity by the prototype space-based cloud radar was approximately 10.9 dB stronger than that by the S-band Doppler radar (SA radar), and 13.7 dB stronger than that by the ground-based cloud radar. The reflectivity measured by the SA radar was 0.4 dB stronger than that by the ground-based cloud radar. This study could provide a method for the quantitative examination of the observation ability for space-based radars.展开更多
A convenient implementation approach to space-time adaptive processing for airborne radar has been proposed, which is added by some auxiliary array elements in the area of main-lobe clutter on the basis of 2-D Capon a...A convenient implementation approach to space-time adaptive processing for airborne radar has been proposed, which is added by some auxiliary array elements in the area of main-lobe clutter on the basis of 2-D Capon approach . It is of practical use for its small computational load. This approach possesses the ideal performance in the area of main-lobe clutter . In addition, the approach which is added by some auxiliary beams in the area of main-lobe clutter has also been discussed.展开更多
Bistatic/multistatic radar has great potential advantages over its monostatic counterpart. However, the separation of a transmitter and a receiver leads to difficulties in locating the target position accurately and g...Bistatic/multistatic radar has great potential advantages over its monostatic counterpart. However, the separation of a transmitter and a receiver leads to difficulties in locating the target position accurately and guaranteeing space-timefrequency synchronization of the transmitter and the receiver.The error model of space-time-frequency synchronization in a motion platform of bistatic/multistatic radar is studied. The relationship between the space synchronization error and the transmitter platform position, receiver platform position, moving state, and beam pointing error, is analyzed. The effect of space synchronization error on target echo power is studied. The target scattering characteristics are restructured by many separate scattering centers of the target in high frequency regions. Based on the scattering centers model of the radar target, this radar target echo model and the simulation method are discussed. The algorithm of bistatic/multistatic radar target echo accurately reflects the scattering characteristics of the radar target, pulse modulation speciality of radar transmitting signals, and spacetime-frequency synchronization error characteristics between the transmitter station and the receiver station. The simulation of bistatic radar is completed in computer, and the results of the simulation validate the feasibility of the method.展开更多
A novel adaptive detector for airborne radar space-time adaptive detection (STAD) in partially homogeneous environments is proposed. The novel detector combines the numerically stable Krylov subspace technique and d...A novel adaptive detector for airborne radar space-time adaptive detection (STAD) in partially homogeneous environments is proposed. The novel detector combines the numerically stable Krylov subspace technique and diagonal loading technique, and it uses the framework of the adaptive coherence estimator (ACE). It can effectively detect a target with low sample support. Compared with its natural competitors, the novel detector has higher proba- bility of detection (PD), especially when the number of the training data is low. Moreover, it is shown to be practically constant false alarm rate (CFAR).展开更多
Space-time coding radar has been recently proposed and investigated.It is a radar framework which can perform transmit beamforming at the receiver.However,the range resolution decreases when the number of the transmit...Space-time coding radar has been recently proposed and investigated.It is a radar framework which can perform transmit beamforming at the receiver.However,the range resolution decreases when the number of the transmit element increases.A subarray-based space-time coding(sub-STC)radar is explored to alleviate the range resolution reduction.For the proposed radar configuration,an identical waveform is transmitted and it introduces a small time offset in different subarrays.The multidimensional ambiguity function of sub-STC radar is defined by considering resolutions in multiple domains including the range,Doppler,angle and probing direction.Analyses on properties of the multi-dimensional ambiguity function of the sub-STC radar with regard to the spatial coverage,resolution performance and low sidelobes are also given.Results reveal that the range resolution and low sidelobes performance are improved with the proposed approach.展开更多
There exist three synchronizing problems in the bistatic radar system that some signals of the radar receiver must be synchronized with those of the radar transmitter. Several methods realizing data transmission, whic...There exist three synchronizing problems in the bistatic radar system that some signals of the radar receiver must be synchronized with those of the radar transmitter. Several methods realizing data transmission, which are used to complete the synchronization existing in the bistatic radar system, are described. Then a new idea is brought forward that employs space laser communication in the bistatic radar system to realize its data transmission. The theoretic analysis of the idea's usability and its merits are discussed in details. Finally the latest development of space laser communication is introduced, and the utility of the idea is pointed out further.展开更多
Fundamental definitions of distance and velocity in radar measurement principle are examined and revised from strict theoretical point of view. Synchronization scheme - for clocks in uniform, translatory relative moti...Fundamental definitions of distance and velocity in radar measurement principle are examined and revised from strict theoretical point of view. Synchronization scheme - for clocks in uniform, translatory relative motion is introduced as theoretical foundation for GPS and GLONASS type navigation and positioning technology. Traditional definitions of two-way radar measurement, based on arithmetic mean vlaue concept, turn out to be special cases of revised definitions for one-way radar measurement, based on geometric mean concept, derived from synchronization of moving clocks in accordance with the principle of relativity. The essential physical meaning of Lorentz transformation is interpreted in terms of radar measured parameters. Invariance or absoluteness of four dimensional interval turns out to be invariance or absoluteness of geometric mean time interval. The Lorentz factor turns out to be ratio of geometric mean and arithmetic mean time intervals in terms of radar measured parameters. Theoretical results are illustrated transparently by numerical examples. A crucial experiment for direct testing of the second postulate of special relativity by means of GPS of GLONASS type technology is proposed in this paper.展开更多
基金the Chinese Academy of Meteorological Sciences Basic Scientific and Operational Project(observation and retrieval methods of microphysics and dynamic parameters of cloud and precipitation with multi-wavelength remote sensing)the National Key Program for Developing Basic Sciences under Grant 2012CB417202+1 种基金the Meteorological Special Project(study and data process and key technology for space-borne precipitation radar)the National Natural Science Foundation of China(Grant Nos.40775021 and 41075098)
文摘A prototype space-based cloud radar has been a precipitation system over Tianjin, China in July developed and was installed on an airplane to observe 2010. Ground-based S-band and Ka-band radars were used to examine the observational capability of the prototype. A cross-comparison algorithm between different wavelengths, spatial resolutions and platform radars is presented. The reflectivity biases, correlation coefficients and standard deviations between the radars are analyzed. The equivalent reflectivity bias between the S- and Ka-band radars were simulated with a given raindrop size distribution. The results indicated that reflectivity bias between the S- and Ka-band radars due to scattering properties was less than 5 dB, and for weak precipitation the bias was negligible. The prototype space-based cloud radar was able to measure a reasonable vertical profile of reflectivity, but the reflectivity below an altitude of 1.5 km above ground level was obscured by ground clutter. The measured refiectivity by the prototype space-based cloud radar was approximately 10.9 dB stronger than that by the S-band Doppler radar (SA radar), and 13.7 dB stronger than that by the ground-based cloud radar. The reflectivity measured by the SA radar was 0.4 dB stronger than that by the ground-based cloud radar. This study could provide a method for the quantitative examination of the observation ability for space-based radars.
基金National Nature Science FoundationNational Deferise Research Funds
文摘A convenient implementation approach to space-time adaptive processing for airborne radar has been proposed, which is added by some auxiliary array elements in the area of main-lobe clutter on the basis of 2-D Capon approach . It is of practical use for its small computational load. This approach possesses the ideal performance in the area of main-lobe clutter . In addition, the approach which is added by some auxiliary beams in the area of main-lobe clutter has also been discussed.
基金supported by the National Natural Science Foundation of China(61271327)
文摘Bistatic/multistatic radar has great potential advantages over its monostatic counterpart. However, the separation of a transmitter and a receiver leads to difficulties in locating the target position accurately and guaranteeing space-timefrequency synchronization of the transmitter and the receiver.The error model of space-time-frequency synchronization in a motion platform of bistatic/multistatic radar is studied. The relationship between the space synchronization error and the transmitter platform position, receiver platform position, moving state, and beam pointing error, is analyzed. The effect of space synchronization error on target echo power is studied. The target scattering characteristics are restructured by many separate scattering centers of the target in high frequency regions. Based on the scattering centers model of the radar target, this radar target echo model and the simulation method are discussed. The algorithm of bistatic/multistatic radar target echo accurately reflects the scattering characteristics of the radar target, pulse modulation speciality of radar transmitting signals, and spacetime-frequency synchronization error characteristics between the transmitter station and the receiver station. The simulation of bistatic radar is completed in computer, and the results of the simulation validate the feasibility of the method.
基金supported by the National Natural Science Foundation of China(609250056110216961501505)
文摘A novel adaptive detector for airborne radar space-time adaptive detection (STAD) in partially homogeneous environments is proposed. The novel detector combines the numerically stable Krylov subspace technique and diagonal loading technique, and it uses the framework of the adaptive coherence estimator (ACE). It can effectively detect a target with low sample support. Compared with its natural competitors, the novel detector has higher proba- bility of detection (PD), especially when the number of the training data is low. Moreover, it is shown to be practically constant false alarm rate (CFAR).
基金supported by the National Key Research and Development Program of China(2016YFE0200400)the Key R&D Program of Shaanxi Province(2017KW-ZD-12)+1 种基金the Postdoctoral Science Foundation of Shaanxi Provincethe Nature Science Foundation of Shaanxi Province
文摘Space-time coding radar has been recently proposed and investigated.It is a radar framework which can perform transmit beamforming at the receiver.However,the range resolution decreases when the number of the transmit element increases.A subarray-based space-time coding(sub-STC)radar is explored to alleviate the range resolution reduction.For the proposed radar configuration,an identical waveform is transmitted and it introduces a small time offset in different subarrays.The multidimensional ambiguity function of sub-STC radar is defined by considering resolutions in multiple domains including the range,Doppler,angle and probing direction.Analyses on properties of the multi-dimensional ambiguity function of the sub-STC radar with regard to the spatial coverage,resolution performance and low sidelobes are also given.Results reveal that the range resolution and low sidelobes performance are improved with the proposed approach.
文摘There exist three synchronizing problems in the bistatic radar system that some signals of the radar receiver must be synchronized with those of the radar transmitter. Several methods realizing data transmission, which are used to complete the synchronization existing in the bistatic radar system, are described. Then a new idea is brought forward that employs space laser communication in the bistatic radar system to realize its data transmission. The theoretic analysis of the idea's usability and its merits are discussed in details. Finally the latest development of space laser communication is introduced, and the utility of the idea is pointed out further.
文摘Fundamental definitions of distance and velocity in radar measurement principle are examined and revised from strict theoretical point of view. Synchronization scheme - for clocks in uniform, translatory relative motion is introduced as theoretical foundation for GPS and GLONASS type navigation and positioning technology. Traditional definitions of two-way radar measurement, based on arithmetic mean vlaue concept, turn out to be special cases of revised definitions for one-way radar measurement, based on geometric mean concept, derived from synchronization of moving clocks in accordance with the principle of relativity. The essential physical meaning of Lorentz transformation is interpreted in terms of radar measured parameters. Invariance or absoluteness of four dimensional interval turns out to be invariance or absoluteness of geometric mean time interval. The Lorentz factor turns out to be ratio of geometric mean and arithmetic mean time intervals in terms of radar measured parameters. Theoretical results are illustrated transparently by numerical examples. A crucial experiment for direct testing of the second postulate of special relativity by means of GPS of GLONASS type technology is proposed in this paper.