The closure of a turbulence field is a longstanding fundamental problem, while most closure models are introduced in spectral space. Inspired by Chou's quasi-normal closure method in spectral space, we propose an ana...The closure of a turbulence field is a longstanding fundamental problem, while most closure models are introduced in spectral space. Inspired by Chou's quasi-normal closure method in spectral space, we propose an analytical closure model for isotropic turbulence based on the extended scale similarity theory of the velocity structure function in physical space. The assumptions and certain approximations are justified with direct numerical simulation. The asymptotic scaling properties are reproduced by this new closure method, in comparison to the classical Batchelor model.展开更多
Authorship attribution, also known as authorship classification, is the problem of identifying the authors (reviewers) of a set of documents (reviews). The common approach is to build a classifier using supervised...Authorship attribution, also known as authorship classification, is the problem of identifying the authors (reviewers) of a set of documents (reviews). The common approach is to build a classifier using supervised learning. This approach has several issues which hurts its applicability. First, supervised learning needs a large set of documents from each author to serve as the training data. This can be difficult in practice. For example, in the online review domain, most reviewers (authors) only write a few reviews, which are not enough to serve as the training data. Second, the learned classifier cannot be applied to authors whose documents have not been used in training. In this article, we propose a novel solution to deal with the two problems. The core idea is that instead of learning in the original document space, we transform it to a similarity space. In the similarity space, the learning is able to naturally tackle the issues. Our experiment results based on online reviews and reviewers show that the proposed method outperforms the state-of-the-art supervised and unsupervised baseline methods significantly.展开更多
In this paper, we target a similarity search among data supply chains, which plays an essential role in optimizing the supply chain and extending its value. This problem is very challenging for application-oriented da...In this paper, we target a similarity search among data supply chains, which plays an essential role in optimizing the supply chain and extending its value. This problem is very challenging for application-oriented data supply chains because the high complexity of the data supply chain makes the computation of similarity extremely complex and inefficient. In this paper, we propose a feature space representation model based on key points,which can extract the key features from the subsequences of the original data supply chain and simplify it into a feature vector form. Then, we formulate the similarity computation of the subsequences based on the multiscale features. Further, we propose an improved hierarchical clustering algorithm for a similarity search over the data supply chains. The main idea is to separate the subsequences into disjoint groups such that each group meets one specific clustering criteria; thus, the cluster containing the query object is the similarity search result. The experimental results show that the proposed approach is both effective and efficient for data supply chain retrieval.展开更多
文摘The closure of a turbulence field is a longstanding fundamental problem, while most closure models are introduced in spectral space. Inspired by Chou's quasi-normal closure method in spectral space, we propose an analytical closure model for isotropic turbulence based on the extended scale similarity theory of the velocity structure function in physical space. The assumptions and certain approximations are justified with direct numerical simulation. The asymptotic scaling properties are reproduced by this new closure method, in comparison to the classical Batchelor model.
基金This work was supported by the National Natural Science Foundation of China under Grant Nos. 61272275, 61232002, 61272110, 61202036, 61379004, 61472337, and 61028003, and the 111 Project of China under Grant No. B07037.
文摘Authorship attribution, also known as authorship classification, is the problem of identifying the authors (reviewers) of a set of documents (reviews). The common approach is to build a classifier using supervised learning. This approach has several issues which hurts its applicability. First, supervised learning needs a large set of documents from each author to serve as the training data. This can be difficult in practice. For example, in the online review domain, most reviewers (authors) only write a few reviews, which are not enough to serve as the training data. Second, the learned classifier cannot be applied to authors whose documents have not been used in training. In this article, we propose a novel solution to deal with the two problems. The core idea is that instead of learning in the original document space, we transform it to a similarity space. In the similarity space, the learning is able to naturally tackle the issues. Our experiment results based on online reviews and reviewers show that the proposed method outperforms the state-of-the-art supervised and unsupervised baseline methods significantly.
基金partly supported by the National Natural Science Foundation of China(Nos.61532012,61370196,and 61672109)
文摘In this paper, we target a similarity search among data supply chains, which plays an essential role in optimizing the supply chain and extending its value. This problem is very challenging for application-oriented data supply chains because the high complexity of the data supply chain makes the computation of similarity extremely complex and inefficient. In this paper, we propose a feature space representation model based on key points,which can extract the key features from the subsequences of the original data supply chain and simplify it into a feature vector form. Then, we formulate the similarity computation of the subsequences based on the multiscale features. Further, we propose an improved hierarchical clustering algorithm for a similarity search over the data supply chains. The main idea is to separate the subsequences into disjoint groups such that each group meets one specific clustering criteria; thus, the cluster containing the query object is the similarity search result. The experimental results show that the proposed approach is both effective and efficient for data supply chain retrieval.