Since the research on verification to passive design strategies in sustainable building is at the initial stage,and its test method and verification conclusion are not scientific enough to validate,this paper proposes...Since the research on verification to passive design strategies in sustainable building is at the initial stage,and its test method and verification conclusion are not scientific enough to validate,this paper proposes the necessity of building physical environmental monitoring to quantitative optimization of passive strategies efficiency from the perspective of architecture design and building environment. Adopting comparative research method,this research chooses six types of atrium space in cold climate in China as a prototype,focusing on building physical environmental performance difference in and between atrium and building main space. Spatial parameters of the atrium space will be divided into four factors: spatial geometry,interfacial properties,internal and external related categories. With subdividing these four factors into sub-factors,this paper makes crosscomparison among the sub-factors to clarify passive strategies effectiveness in atrium. Data comparison analysis shows that Winter atrium passive strategy in cold regions from traditional view is not obvious in practical application,and test data need to be stratified refined in atrium design in case of optimizing passive strategy from building prototype perspective.展开更多
Based on the operating principle and the electric property design of the passive hydrogen maser, the technology and test results of its space adaptability are carried out under the special launch conditions and space ...Based on the operating principle and the electric property design of the passive hydrogen maser, the technology and test results of its space adaptability are carried out under the special launch conditions and space environment. The various perturbations affecting the output frequency of such a standard used for the navigation satellite system are specified, such as magnetic field change, vibration, thermal vacuum and radiation. Through the adaptability technology in the aspects above, the security and reliability of the space passive hydrogen maser sufficiently fulfill the requirements of space operation. At present, the space passive hydrogen maser is working normally on board, indicating that the space adaptability satisfies the design requirement.展开更多
Rationale: Patients with cancer commonly experience dyspnea originating from ventilatory, circulatory and musculoskeletal sources, and dyspnea is best determined by cardiopulmonary exercise testing (CPET). Objectives:...Rationale: Patients with cancer commonly experience dyspnea originating from ventilatory, circulatory and musculoskeletal sources, and dyspnea is best determined by cardiopulmonary exercise testing (CPET). Objectives: In this retrospective pilot study, we evaluated patients with hematologic and solid malignancies by CPET to determine the primary source of their dyspnea. Methods: Subjects were exercised on a cycle ergometer with increasing workloads. Minute ventilation, heart rate, breathing reserve, oxygen uptake (V’O<sub>2</sub>), O<sub>2</sub>-pulse, ventilatory equivalents for carbon dioxide and oxygen (V’<sub>E</sub>/V’CO<sub>2</sub> and V’<sub>E</sub>/V’O<sub>2</sub>, respectively) were measured at baseline and peak exercise. The slope and intercept for V’<sub>E</sub>/V’CO<sub>2</sub> was computed for all subjects. Peak V’O<sub>2</sub> 4% predicted indicated a circulatory or ventilatory limitation. Results: Complete clinical and physiological data were available for 36 patients (M/F 20/16);32 (89%) exhibited ventilatory or circulatory limitation as shown by a reduced peak V’O<sub>2</sub> and 10 subjects with normal physiologic data. The largest cohort comprised the pulmonary vascular group (n = 18) whose mean ± SD peak V’O<sub>2</sub> was 61% ± 17% predicted. There were close associations between V’O<sub>2</sub> and spirometric values. Peak V’<sub>E</sub>/V’O<sub>2</sub> and V’<sub>E</sub>/V’CO<sub>2</sub> were highest in the circulatory and ventilatory cohorts, consistent with increase in dead space breathing. The intercept of the V’<sub>E</sub>-V’CO<sub>2</sub> relationship was lowest in patients with cardiovascular impairment. Conclusion: Dyspneic patients with malignancies exhibit dead space breathing, many exhibiting a circulatory source for exercise limitation with a prominent pulmonary vascular component. Potential factors include effects of chemo- and radiation therapy on cardiac function and pulmonary vascular endothelium.展开更多
基金Sponsored by the Key Project of National Natural Science Foundation of China (Grant No.51138004)the National Science and Technology Support Program (Grant No.2012BAJ10B02)
文摘Since the research on verification to passive design strategies in sustainable building is at the initial stage,and its test method and verification conclusion are not scientific enough to validate,this paper proposes the necessity of building physical environmental monitoring to quantitative optimization of passive strategies efficiency from the perspective of architecture design and building environment. Adopting comparative research method,this research chooses six types of atrium space in cold climate in China as a prototype,focusing on building physical environmental performance difference in and between atrium and building main space. Spatial parameters of the atrium space will be divided into four factors: spatial geometry,interfacial properties,internal and external related categories. With subdividing these four factors into sub-factors,this paper makes crosscomparison among the sub-factors to clarify passive strategies effectiveness in atrium. Data comparison analysis shows that Winter atrium passive strategy in cold regions from traditional view is not obvious in practical application,and test data need to be stratified refined in atrium design in case of optimizing passive strategy from building prototype perspective.
基金supported by the Next Generation of Beidou Navigation Satellite(the Space Passive Hydrogen Maser Technology,GFZX0301020104)
文摘Based on the operating principle and the electric property design of the passive hydrogen maser, the technology and test results of its space adaptability are carried out under the special launch conditions and space environment. The various perturbations affecting the output frequency of such a standard used for the navigation satellite system are specified, such as magnetic field change, vibration, thermal vacuum and radiation. Through the adaptability technology in the aspects above, the security and reliability of the space passive hydrogen maser sufficiently fulfill the requirements of space operation. At present, the space passive hydrogen maser is working normally on board, indicating that the space adaptability satisfies the design requirement.
文摘Rationale: Patients with cancer commonly experience dyspnea originating from ventilatory, circulatory and musculoskeletal sources, and dyspnea is best determined by cardiopulmonary exercise testing (CPET). Objectives: In this retrospective pilot study, we evaluated patients with hematologic and solid malignancies by CPET to determine the primary source of their dyspnea. Methods: Subjects were exercised on a cycle ergometer with increasing workloads. Minute ventilation, heart rate, breathing reserve, oxygen uptake (V’O<sub>2</sub>), O<sub>2</sub>-pulse, ventilatory equivalents for carbon dioxide and oxygen (V’<sub>E</sub>/V’CO<sub>2</sub> and V’<sub>E</sub>/V’O<sub>2</sub>, respectively) were measured at baseline and peak exercise. The slope and intercept for V’<sub>E</sub>/V’CO<sub>2</sub> was computed for all subjects. Peak V’O<sub>2</sub> 4% predicted indicated a circulatory or ventilatory limitation. Results: Complete clinical and physiological data were available for 36 patients (M/F 20/16);32 (89%) exhibited ventilatory or circulatory limitation as shown by a reduced peak V’O<sub>2</sub> and 10 subjects with normal physiologic data. The largest cohort comprised the pulmonary vascular group (n = 18) whose mean ± SD peak V’O<sub>2</sub> was 61% ± 17% predicted. There were close associations between V’O<sub>2</sub> and spirometric values. Peak V’<sub>E</sub>/V’O<sub>2</sub> and V’<sub>E</sub>/V’CO<sub>2</sub> were highest in the circulatory and ventilatory cohorts, consistent with increase in dead space breathing. The intercept of the V’<sub>E</sub>-V’CO<sub>2</sub> relationship was lowest in patients with cardiovascular impairment. Conclusion: Dyspneic patients with malignancies exhibit dead space breathing, many exhibiting a circulatory source for exercise limitation with a prominent pulmonary vascular component. Potential factors include effects of chemo- and radiation therapy on cardiac function and pulmonary vascular endothelium.