Space time trellis coding (STTC) techniques have been proposed to achieve both diversity and coding gains in multiple input multiple output (MIMO) fading channels. But with more transmit antennas STTCs suffer from...Space time trellis coding (STTC) techniques have been proposed to achieve both diversity and coding gains in multiple input multiple output (MIMO) fading channels. But with more transmit antennas STTCs suffer from the design dificulty and complexity increasing. This paper proposes a scheme, named parallel concatenated space time trellis codes (PC-STTC), to achieve the tradeoff between the performances and complexity of STTCs for a large number of transmit antennas. Simulation results and complexity comparison are provided to demonstrate the performance and superiority of the proposed scheme over conventional schemes in fast fading channels in low signal-to-noise ratio (SNR) regions. And an EXIT (extrinsic information transform) chart is given to analyze the iterative convergence of the proposed scheme. It shows that PC-STTC has better iterative convergence in low SNR regions.展开更多
A force with an acceleration that is equal to multiples greater than the speed of light per unit time is exerted on a cloud of charged particles. The particles are resultantly accelerated to within an infinitesimal fr...A force with an acceleration that is equal to multiples greater than the speed of light per unit time is exerted on a cloud of charged particles. The particles are resultantly accelerated to within an infinitesimal fraction of the speed of light. As the force or acceleration increases, the particles’ velocity asymptotically approaches but never achieves the speed of light obeying relativity. The asymptotic increase in the particles’ velocity toward the speed of light as acceleration increasingly surpasses the speed of light per unit time does not compensate for the momentum value produced on the particles at sub-light velocities. Hence, the particles’ inertial mass value must increase as acceleration increases. This increase in the particles’ inertial mass as the particles are accelerated produce a gravitational field which is believed to occur in the oscillation of quarks achieving velocities close to the speed of light. The increased inertial mass of the density of accelerated charged particles becomes the source mass (or Big “M”) in Newton’s equation for gravitational force. This implies that a space-time curve is generated by the accelerated particles. Thus, it is shown that the acceleration number (or multiple of the speed of light greater than 1 per unit of time) and the number of charged particles in the cloud density are surjectively mapped to points on a differential manifold or space-time curved surface. Two aspects of Einstein’s field equations are used to describe the correspondence between the gravitational field produced by the accelerated particles and the resultant space-time curve. The two aspects are the Schwarzchild metric and the stress energy tensor. Lastly, the possibility of producing a sufficient acceleration or electromagnetic force on the charged particles to produce a gravitational field is shown through the Lorentz force equation. Moreover, it is shown that a sufficient voltage can be generated to produce an acceleration/force on the particles that is multiples greater than the speed of light per unit time thereby generating gravity.展开更多
We generalized an constructing method of noncoherent unitary space time codes (N-USTC) over Rayleigh flat fading channels. A family of N-USTCs with T symbol peroids, M transmit and N receive antennas was constructed b...We generalized an constructing method of noncoherent unitary space time codes (N-USTC) over Rayleigh flat fading channels. A family of N-USTCs with T symbol peroids, M transmit and N receive antennas was constructed by the exponential mapping method based on the tangent subspace of the Grassmann manifold. This exponential mapping method can transform the coherent space time codes (C-STC) into the N-USTC on the Grassmann manifold. We infered an universal framework of constructing a C-STC that is designed by using the algebraic number theory and has full rate and full diversity (FRFD) for t symbol periods and same antennas, where M, N, T, t are general positive integer. We discussed the constraint condition that the exponential mapping has only one solution, from which we presented a approach of searching the optimum adjustive factor αopt that can generate an optimum noncoherent codeword. For different code parameters M, N, T, t and the optimum adjustive factor αopt, we gave the simulation results of the several N-USTCs.展开更多
A short note based on the homogeneous 5D space-time topological mappings is extended to cover DNAs of viruses and how the body’s immune system can be enhanced to recognize and remove it.
基金supported by Shanghai Municipal Government and Nokia
文摘Space time trellis coding (STTC) techniques have been proposed to achieve both diversity and coding gains in multiple input multiple output (MIMO) fading channels. But with more transmit antennas STTCs suffer from the design dificulty and complexity increasing. This paper proposes a scheme, named parallel concatenated space time trellis codes (PC-STTC), to achieve the tradeoff between the performances and complexity of STTCs for a large number of transmit antennas. Simulation results and complexity comparison are provided to demonstrate the performance and superiority of the proposed scheme over conventional schemes in fast fading channels in low signal-to-noise ratio (SNR) regions. And an EXIT (extrinsic information transform) chart is given to analyze the iterative convergence of the proposed scheme. It shows that PC-STTC has better iterative convergence in low SNR regions.
文摘A force with an acceleration that is equal to multiples greater than the speed of light per unit time is exerted on a cloud of charged particles. The particles are resultantly accelerated to within an infinitesimal fraction of the speed of light. As the force or acceleration increases, the particles’ velocity asymptotically approaches but never achieves the speed of light obeying relativity. The asymptotic increase in the particles’ velocity toward the speed of light as acceleration increasingly surpasses the speed of light per unit time does not compensate for the momentum value produced on the particles at sub-light velocities. Hence, the particles’ inertial mass value must increase as acceleration increases. This increase in the particles’ inertial mass as the particles are accelerated produce a gravitational field which is believed to occur in the oscillation of quarks achieving velocities close to the speed of light. The increased inertial mass of the density of accelerated charged particles becomes the source mass (or Big “M”) in Newton’s equation for gravitational force. This implies that a space-time curve is generated by the accelerated particles. Thus, it is shown that the acceleration number (or multiple of the speed of light greater than 1 per unit of time) and the number of charged particles in the cloud density are surjectively mapped to points on a differential manifold or space-time curved surface. Two aspects of Einstein’s field equations are used to describe the correspondence between the gravitational field produced by the accelerated particles and the resultant space-time curve. The two aspects are the Schwarzchild metric and the stress energy tensor. Lastly, the possibility of producing a sufficient acceleration or electromagnetic force on the charged particles to produce a gravitational field is shown through the Lorentz force equation. Moreover, it is shown that a sufficient voltage can be generated to produce an acceleration/force on the particles that is multiples greater than the speed of light per unit time thereby generating gravity.
文摘We generalized an constructing method of noncoherent unitary space time codes (N-USTC) over Rayleigh flat fading channels. A family of N-USTCs with T symbol peroids, M transmit and N receive antennas was constructed by the exponential mapping method based on the tangent subspace of the Grassmann manifold. This exponential mapping method can transform the coherent space time codes (C-STC) into the N-USTC on the Grassmann manifold. We infered an universal framework of constructing a C-STC that is designed by using the algebraic number theory and has full rate and full diversity (FRFD) for t symbol periods and same antennas, where M, N, T, t are general positive integer. We discussed the constraint condition that the exponential mapping has only one solution, from which we presented a approach of searching the optimum adjustive factor αopt that can generate an optimum noncoherent codeword. For different code parameters M, N, T, t and the optimum adjustive factor αopt, we gave the simulation results of the several N-USTCs.
文摘A short note based on the homogeneous 5D space-time topological mappings is extended to cover DNAs of viruses and how the body’s immune system can be enhanced to recognize and remove it.