Urban agglomerations are spatial entities that promote the development of ‘new urbanization' processes within China. In this context, the concept of ‘multiscale urban agglomeration spaces' encompasses three ...Urban agglomerations are spatial entities that promote the development of ‘new urbanization' processes within China. In this context, the concept of ‘multiscale urban agglomeration spaces' encompasses three linked levels: macroscale urban agglomerations, mesoscale cities, and microscale urban centers. Applying a series of multidisciplinary integrated research methods drawn from geography, urban planning, and architecture, this paper reveals two intensive utilization laws that can be generalized to apply to multiscale urban agglomeration spaces, top-to-bottom ‘positive transmission' linkage and inside-to-outside ‘negative transmission' movement. This paper also proposes optimization transmission theory and policy decision technical pathways that can be applied to these three urban agglomeration spatial scales. Specific technical pathways of transmission include intensive expansion and simulated decision-making in macroscale urban agglomerations, ecology, production, and living space intensive layout and dynamic decision-making in mesoscale cities, and four cores(i.e., ‘single, ring, axis, and pole core') progressive linkage and intensive optimization decision-making in microscale urban centers. The theory and technical pathways proposed in this paper solve the technical problem of optimization and provide intensive methods that can be applied not only at the individual level but also at multiple scales in urban agglomeration spaces. This study also advances a series of comprehensive technical solutions that can be applied to both compact and smart growth cities as well as to urban agglomerations. Solid theoretical support is provided for the optimization of Chinese land development, urbanization, agricultural development, and ecological security.展开更多
China scheduled to complete the assembly of the T-shaped Tiangong Space Station in 2022,and will enter a new stage of utilization.There are more than 20 experiment racks inside the modules,and more than 50 external on...China scheduled to complete the assembly of the T-shaped Tiangong Space Station in 2022,and will enter a new stage of utilization.There are more than 20 experiment racks inside the modules,and more than 50 external onboard payloads mounting spaces,which will support large-scale science and technology experiments during the operation.The development of internal experiment racks and external research accommodations approved during the construction has been completed,of which 4 racks in Tianhe core module,including High Microgravity Level research Rack(HMLR)and Container-less Materials Processing Rack(CMPR),have finished on-orbit tests;while other racks in Wentian and Mengtian experiment modules are under comprehensive ground tests.The Chinese Space Survey Telescope(CSST)has advanced much in the last two years with 24 pre-launch research projects funded and 4 joint science center built in preparation for CSST’s future scientific observations and operations.The systematic research planning for China’s Space Station(CSS)during 2022-2032 is updated with the researches classified into four important areas:space life sciences and human research,microgravity physical sciences,space astronomy and Earth science,and new space technologies and applications.According to the planning,more than 1000 experiments are expected to perform in CSS during the operating period.Overall,the CSS utilization missions are proceeding as planned,which will contribute to the major scientific or application output and have a positive impact on the quality of life on Earth.展开更多
Number of reservoirs in China ranks the first in the world. Due to the complex geology, and superimposing rainfall and reservoir water fluctuation, the bank collapse chain is prone to disasters. The Yangtze River Rese...Number of reservoirs in China ranks the first in the world. Due to the complex geology, and superimposing rainfall and reservoir water fluctuation, the bank collapse chain is prone to disasters. The Yangtze River Reservoir is key geological disaster prevention area. Studying the process of reservoir disaster is significant because of the limited territorial space utilization. Scientific and technological issues, i.e., the mechanism of bank collapse disaster chain of large reservoirs, the interaction mechanism of bank collapse disaster chain and territorial space utilization, the early identification, monitoring technology and ecological prevention and control technology system of disaster chain, and the territorial space geological safety and control technology system are focused. We consider the material transformation, energy transfer and information transmission in disaster chain;adopt the survey, Space-Air-Ground integrated monitoring, theoretical analysis, numerical simulation and the multidisciplinary research methods;reveal the chain source development, evolution process of secondary and derivative disasters;explore the interaction mechanism of disaster chain and territorial space utilization;construct the system of early identification, monitoring, early warning, control and ecological preven-tion to achieve Emission Peak and Carbon Neutrality;provide theoretical and technical support for the territorial space geological safety, regulation and utilization of large reservoirs.展开更多
Popularization of lithium-sulfur batteries(LSBs) is still hindered by shuttle effect and volume expansion.Herein, a new modularized sulfur storage strategy is proposed to solve above problems and accomplished via empl...Popularization of lithium-sulfur batteries(LSBs) is still hindered by shuttle effect and volume expansion.Herein, a new modularized sulfur storage strategy is proposed to solve above problems and accomplished via employing 100% space utilization host material of cobalt loaded carbon nanoparticles derived from ZIF-67. The modular dispersed storage of sulfur not only greatly increases the proportion of active sulfur,but also inhibits the occurrence of volume expansion. Meanwhile, 100% space utilization host material can greatly improve the conductivity of the cathode, provide a larger electrolyte wetting interface and effectively suppress the shuttle effect. Moreover, loaded cobalt particles have high catalytic activity for electrochemical reaction and can effectively improve the redox kinetics. The cell with new cathode host material carbonized at 650 ℃(ZIF-67(650 ℃)) exhibits superior rate performance and can maintain a high specific capacity of 950 m Ah/g after 100 cycles at 0.2 C, showing a good cycle stability.展开更多
In order to calibrate electrical instruments and generate a constant magnetic field, a novel design method for square Helmholtz coil is proposed. According to the superposition principle in electromagnetics, the theor...In order to calibrate electrical instruments and generate a constant magnetic field, a novel design method for square Helmholtz coil is proposed. According to the superposition principle in electromagnetics, the theory of the square Helmholtz coil is established, and the design method is verified by Matlab calculation. Compared with conventional circular Helmholtz coil, the novel square one is with a larger uniform region. Simulation work is conducted in Maxwell, and the distribution of the magnetic field is obtained. The results demonstrate the validation of the applied calculation method of the proposed Helmholtz model. The space utilization rate η is used to make a comparison between the square and circular coils for the uniform region. The square Helmholtz coil is fabricated, the length of a single square coil is 1.5 m, and the amplitude of the magnetic field is controlled by the current. The GSM-19 T proton magnetometer is used to measure the amplitude of the magnetic field generated by the square Helmholtz coil. Experimental results indicate that a wide-range variable uniform magnetic field from 0 to 120 μT is generated in the center of Helmholtz coils.展开更多
This paper presents the results of research and analysis on the quality of the living environment in the heart of small urban centers. These cities are regarded as an attractive area of residence, among others, due to...This paper presents the results of research and analysis on the quality of the living environment in the heart of small urban centers. These cities are regarded as an attractive area of residence, among others, due to the fulfillment of human needs concerning the contact with nature (green) and living with a sense of intimacy, security and peace. Presented results concern the center of Jarostaw and Laficut. Although both cities are located in an underdeveloped region of south-eastern Poland, they have an opportunity to create a positive image of the city center, where not only attractive architectural objects can be found, but also small-town atmosphere, and natural values forming positive relationships between human and the elements of environment.展开更多
The machining industry must maximize the machine tool utilization for its efficient and effective usage. Determining a feasible workpiece location is one of the significant tasks performed in an iterative way via mach...The machining industry must maximize the machine tool utilization for its efficient and effective usage. Determining a feasible workpiece location is one of the significant tasks performed in an iterative way via machining simulations. The maximum utilization of five-axis machine tools depends upon the cutting system’s geometry, the configuration of the machine tool, and the workpiece’s location. In this research, a mathematical model has been developed to determine the workpiece’s feasible location in the five-axis machine tool for avoiding the number of iterations, which are usually performed to eliminate the global collision and axis limit errors. In this research, a generic arrangement of the five-axis machine tool has been selected. The mathematical model of post-processor has been developed by using kinematic modeling methods. The machine tool envelopes have been determined using the post-processor and axial limit. The tooltip reachable workspace is determined by incorporating the post-processor, optimal cutting system length, and machining envelope, thereby further developing an algorithm to determine the feasible workpiece setup parameters accurately. The algorithm’s application has been demonstrated using an example. Finally, the algorithm is validated for feasible workpiece setup parameters in a virtual environment. This research is highly applicable in the industry to eliminate the number of iterations performed for the suitable workpiece setup parameters.展开更多
By the electrochemical anodization method,we achieve the single-layer macroporous silicon on the N-type silicon,and prepare gold nanoparticles with sodium citrate reduction method. Through injecting the gold nanoparti...By the electrochemical anodization method,we achieve the single-layer macroporous silicon on the N-type silicon,and prepare gold nanoparticles with sodium citrate reduction method. Through injecting the gold nanoparticles into the porous silicon by immersion,the fluorescence quenching mechanism of porous silicon influenced by gold nanoparticles is analyzed. Then the macroporous silicon deposited with gold nanoparticles is utilized to enhance the fluorescence of rhodamine 6G(R6G). It is found that when the macroporous silicon is deposited with gold nanoparticles for 6 h,the maximum fluorescence enhancement of R6G(about ten times) can be realized. The N-type porous silicon deposited with gold nanoparticles can be an excellent substrate for fluorescence detection.展开更多
基金Under the auspices of Major Program of the National Natural Science Foundation of China ‘Coupled mechanisms and interactive coercing effects between urbanization and eco-environment in mega-urban agglomerations’(No.41590842)
文摘Urban agglomerations are spatial entities that promote the development of ‘new urbanization' processes within China. In this context, the concept of ‘multiscale urban agglomeration spaces' encompasses three linked levels: macroscale urban agglomerations, mesoscale cities, and microscale urban centers. Applying a series of multidisciplinary integrated research methods drawn from geography, urban planning, and architecture, this paper reveals two intensive utilization laws that can be generalized to apply to multiscale urban agglomeration spaces, top-to-bottom ‘positive transmission' linkage and inside-to-outside ‘negative transmission' movement. This paper also proposes optimization transmission theory and policy decision technical pathways that can be applied to these three urban agglomeration spatial scales. Specific technical pathways of transmission include intensive expansion and simulated decision-making in macroscale urban agglomerations, ecology, production, and living space intensive layout and dynamic decision-making in mesoscale cities, and four cores(i.e., ‘single, ring, axis, and pole core') progressive linkage and intensive optimization decision-making in microscale urban centers. The theory and technical pathways proposed in this paper solve the technical problem of optimization and provide intensive methods that can be applied not only at the individual level but also at multiple scales in urban agglomeration spaces. This study also advances a series of comprehensive technical solutions that can be applied to both compact and smart growth cities as well as to urban agglomerations. Solid theoretical support is provided for the optimization of Chinese land development, urbanization, agricultural development, and ecological security.
文摘China scheduled to complete the assembly of the T-shaped Tiangong Space Station in 2022,and will enter a new stage of utilization.There are more than 20 experiment racks inside the modules,and more than 50 external onboard payloads mounting spaces,which will support large-scale science and technology experiments during the operation.The development of internal experiment racks and external research accommodations approved during the construction has been completed,of which 4 racks in Tianhe core module,including High Microgravity Level research Rack(HMLR)and Container-less Materials Processing Rack(CMPR),have finished on-orbit tests;while other racks in Wentian and Mengtian experiment modules are under comprehensive ground tests.The Chinese Space Survey Telescope(CSST)has advanced much in the last two years with 24 pre-launch research projects funded and 4 joint science center built in preparation for CSST’s future scientific observations and operations.The systematic research planning for China’s Space Station(CSS)during 2022-2032 is updated with the researches classified into four important areas:space life sciences and human research,microgravity physical sciences,space astronomy and Earth science,and new space technologies and applications.According to the planning,more than 1000 experiments are expected to perform in CSS during the operating period.Overall,the CSS utilization missions are proceeding as planned,which will contribute to the major scientific or application output and have a positive impact on the quality of life on Earth.
文摘Number of reservoirs in China ranks the first in the world. Due to the complex geology, and superimposing rainfall and reservoir water fluctuation, the bank collapse chain is prone to disasters. The Yangtze River Reservoir is key geological disaster prevention area. Studying the process of reservoir disaster is significant because of the limited territorial space utilization. Scientific and technological issues, i.e., the mechanism of bank collapse disaster chain of large reservoirs, the interaction mechanism of bank collapse disaster chain and territorial space utilization, the early identification, monitoring technology and ecological prevention and control technology system of disaster chain, and the territorial space geological safety and control technology system are focused. We consider the material transformation, energy transfer and information transmission in disaster chain;adopt the survey, Space-Air-Ground integrated monitoring, theoretical analysis, numerical simulation and the multidisciplinary research methods;reveal the chain source development, evolution process of secondary and derivative disasters;explore the interaction mechanism of disaster chain and territorial space utilization;construct the system of early identification, monitoring, early warning, control and ecological preven-tion to achieve Emission Peak and Carbon Neutrality;provide theoretical and technical support for the territorial space geological safety, regulation and utilization of large reservoirs.
基金supported by the National Natural Science Foundation of China (No.52173255)the Opening Project of the Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials (No.JSKC20021)the Collaborative Innovation Center for Advanced Micro/nanomaterials and Equipment (Co-constructed by Jiangsu Province and Ministry of Education)。
文摘Popularization of lithium-sulfur batteries(LSBs) is still hindered by shuttle effect and volume expansion.Herein, a new modularized sulfur storage strategy is proposed to solve above problems and accomplished via employing 100% space utilization host material of cobalt loaded carbon nanoparticles derived from ZIF-67. The modular dispersed storage of sulfur not only greatly increases the proportion of active sulfur,but also inhibits the occurrence of volume expansion. Meanwhile, 100% space utilization host material can greatly improve the conductivity of the cathode, provide a larger electrolyte wetting interface and effectively suppress the shuttle effect. Moreover, loaded cobalt particles have high catalytic activity for electrochemical reaction and can effectively improve the redox kinetics. The cell with new cathode host material carbonized at 650 ℃(ZIF-67(650 ℃)) exhibits superior rate performance and can maintain a high specific capacity of 950 m Ah/g after 100 cycles at 0.2 C, showing a good cycle stability.
基金The National Natural Science Foundation of China(No.61327803)
文摘In order to calibrate electrical instruments and generate a constant magnetic field, a novel design method for square Helmholtz coil is proposed. According to the superposition principle in electromagnetics, the theory of the square Helmholtz coil is established, and the design method is verified by Matlab calculation. Compared with conventional circular Helmholtz coil, the novel square one is with a larger uniform region. Simulation work is conducted in Maxwell, and the distribution of the magnetic field is obtained. The results demonstrate the validation of the applied calculation method of the proposed Helmholtz model. The space utilization rate η is used to make a comparison between the square and circular coils for the uniform region. The square Helmholtz coil is fabricated, the length of a single square coil is 1.5 m, and the amplitude of the magnetic field is controlled by the current. The GSM-19 T proton magnetometer is used to measure the amplitude of the magnetic field generated by the square Helmholtz coil. Experimental results indicate that a wide-range variable uniform magnetic field from 0 to 120 μT is generated in the center of Helmholtz coils.
文摘This paper presents the results of research and analysis on the quality of the living environment in the heart of small urban centers. These cities are regarded as an attractive area of residence, among others, due to the fulfillment of human needs concerning the contact with nature (green) and living with a sense of intimacy, security and peace. Presented results concern the center of Jarostaw and Laficut. Although both cities are located in an underdeveloped region of south-eastern Poland, they have an opportunity to create a positive image of the city center, where not only attractive architectural objects can be found, but also small-town atmosphere, and natural values forming positive relationships between human and the elements of environment.
基金The funding of the research project was provided by NED University of Engineering and Technology,Pakistan.
文摘The machining industry must maximize the machine tool utilization for its efficient and effective usage. Determining a feasible workpiece location is one of the significant tasks performed in an iterative way via machining simulations. The maximum utilization of five-axis machine tools depends upon the cutting system’s geometry, the configuration of the machine tool, and the workpiece’s location. In this research, a mathematical model has been developed to determine the workpiece’s feasible location in the five-axis machine tool for avoiding the number of iterations, which are usually performed to eliminate the global collision and axis limit errors. In this research, a generic arrangement of the five-axis machine tool has been selected. The mathematical model of post-processor has been developed by using kinematic modeling methods. The machine tool envelopes have been determined using the post-processor and axial limit. The tooltip reachable workspace is determined by incorporating the post-processor, optimal cutting system length, and machining envelope, thereby further developing an algorithm to determine the feasible workpiece setup parameters accurately. The algorithm’s application has been demonstrated using an example. Finally, the algorithm is validated for feasible workpiece setup parameters in a virtual environment. This research is highly applicable in the industry to eliminate the number of iterations performed for the suitable workpiece setup parameters.
基金supported by the National Natural Science Foundation of China(Nos.61308120,61575168 and 11264038)the Doctor Startup Project of Xinjiang University(No.BS120122)+1 种基金the Young Talents Project in Xinjiang Uygur Autonomous Region(No.2013731003)the Xinjiang Science and Technology Project(Nos.2015211C262 and 2014211B003)
文摘By the electrochemical anodization method,we achieve the single-layer macroporous silicon on the N-type silicon,and prepare gold nanoparticles with sodium citrate reduction method. Through injecting the gold nanoparticles into the porous silicon by immersion,the fluorescence quenching mechanism of porous silicon influenced by gold nanoparticles is analyzed. Then the macroporous silicon deposited with gold nanoparticles is utilized to enhance the fluorescence of rhodamine 6G(R6G). It is found that when the macroporous silicon is deposited with gold nanoparticles for 6 h,the maximum fluorescence enhancement of R6G(about ten times) can be realized. The N-type porous silicon deposited with gold nanoparticles can be an excellent substrate for fluorescence detection.