The authors propose an informed search greedy approach that efficiently identifies the influencer nodes in the social Internet of Things with the ability to provide legitimate information.Primarily,the proposed approa...The authors propose an informed search greedy approach that efficiently identifies the influencer nodes in the social Internet of Things with the ability to provide legitimate information.Primarily,the proposed approach minimizes the network size and eliminates undesirable connections.For that,the proposed approach ranks each of the nodes and prioritizes them to identify an authentic influencer.Therefore,the proposed approach discards the nodes having a rank(α)lesser than 0.5 to reduce the network complexity.αis the variable value represents the rank of each node that varies between 0 to 1.Node with the higher value ofαgets the higher priority and vice versa.The threshold valueα=0.5 defined by the authors with respect to their network pruning requirements that can be vary with respect to other research problems.Finally,the algorithm in the proposed approach traverses the trimmed network to identify the authentic node to obtain the desired information.The performance of the proposed method is evaluated in terms of time complexity and accuracy by executing the algorithm on both the original and pruned networks.Experimental results show that the approach identifies authentic influencers on a resultant network in significantly less time than in the original network.Moreover,the accuracy of the proposed approach in identifying the influencer node is significantly higher than that of the original network.Furthermore,the comparison of the proposed approach with the existing approaches demonstrates its efficiency in terms of time consumption and network traversal through the minimum number of hops.展开更多
COVID-19 is a contagious disease and its several variants put under stress in all walks of life and economy as well.Early diagnosis of the virus is a crucial task to prevent the spread of the virus as it is a threat t...COVID-19 is a contagious disease and its several variants put under stress in all walks of life and economy as well.Early diagnosis of the virus is a crucial task to prevent the spread of the virus as it is a threat to life in the whole world.However,with the advancement of technology,the Internet of Things(IoT)and social IoT(SIoT),the versatile data produced by smart devices helped a lot in overcoming this lethal disease.Data mining is a technique that could be used for extracting useful information from massive data.In this study,we used five supervised ML strategies for creating a model to analyze and forecast the existence of COVID-19 using the Kaggle dataset“COVID-19 Symptoms and Presence.”RapidMiner Studio ML software was used to apply the Decision Tree(DT),Random Forest(RF),K-Nearest Neighbors(K-NNs)and Naive Bayes(NB),Integrated Decision Tree(ID3)algorithms.To develop the model,the performance of each model was tested using 10-fold cross-validation and compared to major accuracy measures,Cohan’s kappa statistics,properly or mistakenly categorized cases and root means square error.The results demonstrate that DT outperforms other methods,with an accuracy of 98.42%and a root mean square error of 0.11.In the future,a devisedmodel will be highly recommendable and supportive for early prediction/diagnosis of disease by providing different data sets.展开更多
基金This work was supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2021R1A5A1021944 and 2021R1I1A3048013)Additionally,the research was supported by Kyungpook National University Research Fund,2020.
文摘The authors propose an informed search greedy approach that efficiently identifies the influencer nodes in the social Internet of Things with the ability to provide legitimate information.Primarily,the proposed approach minimizes the network size and eliminates undesirable connections.For that,the proposed approach ranks each of the nodes and prioritizes them to identify an authentic influencer.Therefore,the proposed approach discards the nodes having a rank(α)lesser than 0.5 to reduce the network complexity.αis the variable value represents the rank of each node that varies between 0 to 1.Node with the higher value ofαgets the higher priority and vice versa.The threshold valueα=0.5 defined by the authors with respect to their network pruning requirements that can be vary with respect to other research problems.Finally,the algorithm in the proposed approach traverses the trimmed network to identify the authentic node to obtain the desired information.The performance of the proposed method is evaluated in terms of time complexity and accuracy by executing the algorithm on both the original and pruned networks.Experimental results show that the approach identifies authentic influencers on a resultant network in significantly less time than in the original network.Moreover,the accuracy of the proposed approach in identifying the influencer node is significantly higher than that of the original network.Furthermore,the comparison of the proposed approach with the existing approaches demonstrates its efficiency in terms of time consumption and network traversal through the minimum number of hops.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2021R1A5A1021944 and 2021R1A5A1021944)supported by Kyungpook National University Research Fund,2020.
文摘COVID-19 is a contagious disease and its several variants put under stress in all walks of life and economy as well.Early diagnosis of the virus is a crucial task to prevent the spread of the virus as it is a threat to life in the whole world.However,with the advancement of technology,the Internet of Things(IoT)and social IoT(SIoT),the versatile data produced by smart devices helped a lot in overcoming this lethal disease.Data mining is a technique that could be used for extracting useful information from massive data.In this study,we used five supervised ML strategies for creating a model to analyze and forecast the existence of COVID-19 using the Kaggle dataset“COVID-19 Symptoms and Presence.”RapidMiner Studio ML software was used to apply the Decision Tree(DT),Random Forest(RF),K-Nearest Neighbors(K-NNs)and Naive Bayes(NB),Integrated Decision Tree(ID3)algorithms.To develop the model,the performance of each model was tested using 10-fold cross-validation and compared to major accuracy measures,Cohan’s kappa statistics,properly or mistakenly categorized cases and root means square error.The results demonstrate that DT outperforms other methods,with an accuracy of 98.42%and a root mean square error of 0.11.In the future,a devisedmodel will be highly recommendable and supportive for early prediction/diagnosis of disease by providing different data sets.