With the rapid development of low-orbit satellite com-munication networks both domestically and internationally,space-terrestrial integrated networks will become the future development trend.For space and terrestrial ...With the rapid development of low-orbit satellite com-munication networks both domestically and internationally,space-terrestrial integrated networks will become the future development trend.For space and terrestrial networks with limi-ted resources,the utilization efficiency of the entire space-terres-trial integrated networks resources can be affected by the core network indirectly.In order to improve the response efficiency of core networks expansion construction,early warning of the core network elements capacity is necessary.Based on the inte-grated architecture of space and terrestrial network,multidimen-sional factors are considered in this paper,including the number of terminals,login users,and the rules of users’migration during holidays.Using artifical intelligence(AI)technologies,the regis-tered users of the access and mobility management function(AMF),authorization users of the unified data management(UDM),protocol data unit(PDU)sessions of session manage-ment function(SMF)are predicted in combination with the num-ber of login users,the number of terminals.Therefore,the core network elements capacity can be predicted in advance.The proposed method is proven to be effective based on the data from real network.展开更多
Here,a nonhydrostatic alternative scheme(NAS)is proposed for the grey zone where the nonhydrostatic impact on the atmosphere is evident but not large enough to justify the necessity to include an implicit nonhydrostat...Here,a nonhydrostatic alternative scheme(NAS)is proposed for the grey zone where the nonhydrostatic impact on the atmosphere is evident but not large enough to justify the necessity to include an implicit nonhydrostatic solver in an atmospheric dynamical core.The NAS is designed to replace this solver,which can be incorporated into any hydrostatic models so that existing well-developed hydrostatic models can effectively serve for a longer time.Recent advances in machine learning(ML)provide a potential tool for capturing the main complicated nonlinear-nonhydrostatic relationship.In this study,an ML approach called a neural network(NN)was adopted to select leading input features and develop the NAS.The NNs were trained and evaluated with 12-day simulation results of dry baroclinic-wave tests by the Weather Research and Forecasting(WRF)model.The forward time difference of the nonhydrostatic tendency was used as the target variable,and the five selected features were the nonhydrostatic tendency at the last time step,and four hydrostatic variables at the current step including geopotential height,pressure in two different forms,and potential temperature,respectively.Finally,a practical NAS was developed with these features and trained layer by layer at a 20-km horizontal resolution,which can accurately reproduce the temporal variation and vertical distribution of the nonhydrostatic tendency.Corrected by the NN-based NAS,the improved hydrostatic solver at different horizontal resolutions can run stably for at least one month and effectively reduce most of the nonhydrostatic errors in terms of system bias,anomaly root-mean-square error,and the error of the wave spatial pattern,which proves the feasibility and superiority of this scheme.展开更多
Many networks exhibit the core/periphery structure.Core/periphery structure is a type of meso-scale structure that consists of densely connected core nodes and sparsely connected peripheral nodes.Core nodes tend to be...Many networks exhibit the core/periphery structure.Core/periphery structure is a type of meso-scale structure that consists of densely connected core nodes and sparsely connected peripheral nodes.Core nodes tend to be well-connected,both among themselves and to peripheral nodes,which tend not to be well-connected to other nodes.In this brief report,we propose a new method to detect the core of a network by the centrality of each node.It is discovered that such nodes with non-negative centralities often consist in the core of the networks.The simulation is carried out on different real networks.The results are checked by the objective function.The checked results may show the effectiveness of the simulation results by the centralities of the nodes on the real networks.Furthermore,we discuss the characters of networks with the single core/periphery structure and point out the scope of the application of our method at the end of this paper.展开更多
With the development of satellite communications,the number of satellite nodes is constantly increasing,which undoubtedly increases the difficulty of maintaining network security.Combining software defined network(SDN...With the development of satellite communications,the number of satellite nodes is constantly increasing,which undoubtedly increases the difficulty of maintaining network security.Combining software defined network(SDN) with traditional space-based networks provides a new class of ideas for solving this problem.However,because of the highly centralized network management of the SDN controller,once the SDN controller is destroyed by network attacks,the network it manages will be paralyzed due to loss of control.One of the main security threats to SDN controllers is Distributed Denial of Service(DDoS) attacks,so how to detect DDoS attacks scientifically has become a hot topic among SDN security management.This paper proposes a DDoS attack detection method for space-based networks based on SDN architecture.This attack detection method combines the optimized Long Short-Term Memory(LSTM) deep learning model and Support Vector Machine(SVM),which can not only make classification judgments on the time series,but also achieve the purpose of detecting and judging through the flow characteristics of a period of time.In addition,it can reduce the detection time as well as the system burden.展开更多
The Tianlian 1-03 satellite, the third geosynchronous data relay satellite of China, was successfully launched into space on a LM-3C launch vehicle from the Xichang Satellite Launch Center at 23:43 Beijing time on Jul...The Tianlian 1-03 satellite, the third geosynchronous data relay satellite of China, was successfully launched into space on a LM-3C launch vehicle from the Xichang Satellite Launch Center at 23:43 Beijing time on July 25. Twenty-six minutes after the liftoff, the satellite展开更多
A new core-based shared tree algorithm, viz core-cluster combination-based shared tree (CCST) algorithm and the weighted version (i.e. w-CCST algorithm) are proposed in order to resolve the channel resources waste...A new core-based shared tree algorithm, viz core-cluster combination-based shared tree (CCST) algorithm and the weighted version (i.e. w-CCST algorithm) are proposed in order to resolve the channel resources waste problem in typical source-based multicast routing algorithms in low earth orbit (LEO) satellite IP networks. The CCST algorithm includes the dynamic approximate center (DAC) core selection method and the core-cluster combination multicast route construction scheme. Without complicated onboard computation, the DAC method is uniquely developed for highly dynamic networks of periodical and regular movement. The core-cluster combination method takes core node as the initial core-cluster, and expands it stepwise to construct an entire multicast tree at the lowest tree cost by a shortest path scheme between the newly-generated core-cluster and surplus group members, which results in great bandwidth utilization. Moreover, the w-CCST algorithm is able to strike a balance between performance of tree cost and that of end-to-end propagation delay by adjusting the weighted factor to meet strict end-to-end delay requirements of some real-time multicast services at the expense of a slight increase in tree cost. Finally, performance comparison is conducted between the proposed algorithms and typical algorithms in LEO satellite IP networks. Simulation results show that the CCST algorithm significantly decreases the average tree cost against to the others, and also the average end-to-end propagation delay ofw-CCST algorithm is lower than that of the CCST algorithm.展开更多
The traffic explosion and the rising of diverse requirements lead to many challenges for traditional mobile network architecture on flexibility, scalability, and deployability. To meet new requirements in the 5 G era,...The traffic explosion and the rising of diverse requirements lead to many challenges for traditional mobile network architecture on flexibility, scalability, and deployability. To meet new requirements in the 5 G era, service based architecture is introduced into mobile networks. The monolithic network elements(e.g., MME, PGW, etc.) are split into smaller network functions to provide customized services. However, the management and deployment of network functions in service based 5 G core network are still big challenges. In this paper, we propose a novel management architecture for 5 G service based core network based on NFV and SDN. Combined with SDN, NFV and edge computing, the proposed framework can provide distributed and on-demand deployment of network functions, service guaranteed network slicing, flexible orchestration of network functions and optimal workload allocation. Simulations are conducted to show that the proposed framework and algorithm are effective in terms of reducing network operating cost.展开更多
Recent developments in the aerospace industry have led to a dramatic reduction in the manufacturing and launch costs of low Earth orbit satellites.The new trend enables the paradigm shift of satelliteterrestrial integ...Recent developments in the aerospace industry have led to a dramatic reduction in the manufacturing and launch costs of low Earth orbit satellites.The new trend enables the paradigm shift of satelliteterrestrial integrated networks with global coverage.In particular,the integration of 5G communication systems and satellites has the potential to restructure nextgeneration mobile networks.By leveraging the network function virtualization and network slicing,the satellite 5G core networks will facilitate the coordination and management of network functions in satellite-terrestrial integrated networks.We are the first to deploy a 5G core network on a real-world satellite to investigate its feasibility.We conducted experiments to validate the satellite 5G core network functions.The validated procedures include registration and session setup procedures.The results show that the satellite 5G core network can function normally and generate correct signaling.展开更多
To investigate wavelength response of the no core fiber(NCF)interference spectrum to concentration,a three-layer back propagation(BP)neural network model was established to optimize the concentration sensing data....To investigate wavelength response of the no core fiber(NCF)interference spectrum to concentration,a three-layer back propagation(BP)neural network model was established to optimize the concentration sensing data.In this method,the measured wavelength and the corresponding concentration were trained by a BP neural network,so that the accuracy of the measurement system was optimized.The wavelength was used as the training set and got into the input layer of the three layer BP network model which is used as the input value of the network,and the corresponding actual concentration value was used as the output value of the network,and the optimal network structure was trained.This paper discovers a preferable correlation between the predicted value and the actual value,where the former is approximately equal to the latter.The correlation coefficients of the measured and predicted values for a sucrose concentration were 1.000 89 and 1.003 94;similarly,correlations of0.999 51 and 1.018 8 for a glucose concentration were observed.The results demonstrate that the BP neural network can improve the prediction accuracy of the nonlinear relationship between the interference spectral data and the concentration in NCF sensing systems.展开更多
Optical network is the infrastructure of telecommunicationnetwork. More than 95% of information istransported over optical network in China, wherecore network is the main trunk. How to increase thebit rate of the sing...Optical network is the infrastructure of telecommunicationnetwork. More than 95% of information istransported over optical network in China, wherecore network is the main trunk. How to increase thebit rate of the single wavelength channel, raise thetotal capacity of the DWDM system, extend theoptical transportation distance of electrical repeaterfree of the DWDM system and optical network intelligenceare key problems demanding high attention.The evolution trend of the optical core network isdescribed with some examples in this paper.展开更多
In this paper, an artificial neural network method that can predict the chemical composition of deposited weld metal by CO 2 Shielded Flux Cored Wire Surfacing was studied. It is found that artificial neural networ...In this paper, an artificial neural network method that can predict the chemical composition of deposited weld metal by CO 2 Shielded Flux Cored Wire Surfacing was studied. It is found that artificial neural network is a good approach on studying welding metallurgy processes that cannot be described by conventional mathematical methods. In the same time we explored a new way to study the no equilibrium welding metallurgy processes.展开更多
The Sonreb and Core (SRC) combined method is proposed to assess the concrete compression strength of mass concrete structures.Artificial neural network is employed together with the SRC combined method to obtain the o...The Sonreb and Core (SRC) combined method is proposed to assess the concrete compression strength of mass concrete structures.Artificial neural network is employed together with the SRC combined method to obtain the optimal core number.The artificial neural network is trained based on data from different testing methods.The procedure of using artificial neural network to assess the concrete strength is described.It proves that the SRC combined method is superior in many aspects and artificial the presented neural network has a high efficiency and reliability.The combined method using artificial intelligence is promising in the strength assessment of mass concrete structures such as the dam,the anchor of the suspension bridge,etc.展开更多
Secure authentication between user equipment and 5G core network is a critical issue for 5G system.However,the traditional authentication protocol 5 G-AKA and the centralized key database are at risk of several securi...Secure authentication between user equipment and 5G core network is a critical issue for 5G system.However,the traditional authentication protocol 5 G-AKA and the centralized key database are at risk of several security problems,e.g.key leakage,impersonation attack,MitM attack and single point of failure.In this paper,a blockchain based asymmetric authentication and key agreement protocol(BC-AKA)is proposed for distributed 5G core network.In particular,the key used in the authentication process is replaced from a symmetric key to an asymmetric key,and the database used to store keys in conventional 5G core network is replaced with a blockchain network.A proof of concept system for distributed 5G core network is built based on Ethereum and ECC-Secp256 k1,and the efficiency and effectiveness of the proposed scheme are verified by the experiment results.展开更多
The Internet of Things(IoTs)has become an essential component of the 5th Generation(5G)network and beyond,accelerating the transition to digital society.The increasing signaling traffic generated by billions of IoT de...The Internet of Things(IoTs)has become an essential component of the 5th Generation(5G)network and beyond,accelerating the transition to digital society.The increasing signaling traffic generated by billions of IoT devices has placed significant strain on the 5G Core network(5GC)control plane.To address this issue,the 3rd Gener-ation Partnership Project(3GPP)first proposed a Service-Based Architecture(SBA),intending to create a flexible,scalable,and agile cloud-native 5GC.However,considering the coupling of protocol states and functions,there are still many challenges to fully utilize the benefits of the cloud computing and orchestrate the 5GC in a cloud-native manner.We propose a Message-Level StateLess Design(ML-SLD)to provide a cloud-native 5GC from an architectural standpoint in this paper.Firstly,we propose an innovative mechanism for servitization of the N2 interface to maintain the connection between Radio Access Network(RAN)and the 5GC,avoiding interruptions and dropouts of large-scale user data.Furthermore,we propose an On-demand Message Forwarding(OMF)al-gorithm to reduce the impact of cloud fluctuations on the performance of cloud-native 5GC.Finally,we create a prototype that is based on the OpenAirInterface(OAI)5G core network projects,with all Network Functions(NFs)packaged in dockers and deployed in a kubernetes-based cloud environment.Several experiments have been built with UERANSIM and Chaosblade simulation tools.The findings demonstrate the viability and efficiency of our proposed methods.展开更多
In this paper, the complete process of constructing 3D digital core by fullconvolutional neural network is described carefully. A large number of sandstone computedtomography (CT) images are used as training input for...In this paper, the complete process of constructing 3D digital core by fullconvolutional neural network is described carefully. A large number of sandstone computedtomography (CT) images are used as training input for a fully convolutional neural networkmodel. This model is used to reconstruct the three-dimensional (3D) digital core of Bereasandstone based on a small number of CT images. The Hamming distance together with theMinkowski functions for porosity, average volume specifi c surface area, average curvature,and connectivity of both the real core and the digital reconstruction are used to evaluate theaccuracy of the proposed method. The results show that the reconstruction achieved relativeerrors of 6.26%, 1.40%, 6.06%, and 4.91% for the four Minkowski functions and a Hammingdistance of 0.04479. This demonstrates that the proposed method can not only reconstructthe physical properties of real sandstone but can also restore the real characteristics of poredistribution in sandstone, is the ability to which is a new way to characterize the internalmicrostructure of rocks.展开更多
The developing mobile technologies have resulted in operators focusing on how to optimize their 2G networks and ensure a smooth network end, there are two approaches for upgrade: one core network with a 2G-radio netwo...The developing mobile technologies have resulted in operators focusing on how to optimize their 2G networks and ensure a smooth network end, there are two approaches for upgrade: one core network with a 2G-radio network, while the other is (Mobile Switching Center) with WCDMA MSCS (Mobile Gateway) to optimize the Core network hierararchy展开更多
ZTE Corporation, a leading global provider of telecommunications equipment and network solutions, announced on April 26, 2010 that it has been chosen by China Mobile to deliver its IMS core network in key Chinese prov...ZTE Corporation, a leading global provider of telecommunications equipment and network solutions, announced on April 26, 2010 that it has been chosen by China Mobile to deliver its IMS core network in key Chinese provinces. The China Mobile' s commercial IMS network will boast 1.4 million lines when it is completed in three months. According to the comprehensive evaluation process by China Mobile, ZTE was ranked among the tier one IMS supplier group for the project this time.展开更多
27 August 2012--ZTE Corporation has signed a deal on a packet-switched core network (CN) for KPN Group Belgium (KPNGB). KPNGB will deploy ZTE's packet-switched CN equipment, which supports unified radio access. T...27 August 2012--ZTE Corporation has signed a deal on a packet-switched core network (CN) for KPN Group Belgium (KPNGB). KPNGB will deploy ZTE's packet-switched CN equipment, which supports unified radio access. The contract is the second of its kind between ZTE and KPNfollows from a construction project with KPN Germany (E-Plus) that was completed in September 2010.展开更多
This article presents the network design schemes of CERNET2 including overall architecture, the backbone, core nodes, access solutions and the CNGI peer centers. CERNET2 connects 25 core nodes distributed in 20 cities...This article presents the network design schemes of CERNET2 including overall architecture, the backbone, core nodes, access solutions and the CNGI peer centers. CERNET2 connects 25 core nodes distributed in 20 cities of China at the speed of 2.5-10 Gb/s. CERNET2 has four unique features. First, its backbone adopts native IPv6 protocols, rather than IPv4/IPv6 dual stack. It is the largest pure IPv6 network in the world. Second, it provides an environment for testing and trial operation of China-made IPv6 core routers. It also allows tests of interconnection, interworking and interoperation among multiple vendors. Third, the large IPv6 address space enables the study on network addresses in a real network environment, which ensures the construction of a secured and trusted CNGI. Last, it is a test-bed for NGI applications.展开更多
基金This work was supported by the National Key Research Plan(2021YFB2900602).
文摘With the rapid development of low-orbit satellite com-munication networks both domestically and internationally,space-terrestrial integrated networks will become the future development trend.For space and terrestrial networks with limi-ted resources,the utilization efficiency of the entire space-terres-trial integrated networks resources can be affected by the core network indirectly.In order to improve the response efficiency of core networks expansion construction,early warning of the core network elements capacity is necessary.Based on the inte-grated architecture of space and terrestrial network,multidimen-sional factors are considered in this paper,including the number of terminals,login users,and the rules of users’migration during holidays.Using artifical intelligence(AI)technologies,the regis-tered users of the access and mobility management function(AMF),authorization users of the unified data management(UDM),protocol data unit(PDU)sessions of session manage-ment function(SMF)are predicted in combination with the num-ber of login users,the number of terminals.Therefore,the core network elements capacity can be predicted in advance.The proposed method is proven to be effective based on the data from real network.
基金supported by the National Science Foundation of China(Grant No.42230606)。
文摘Here,a nonhydrostatic alternative scheme(NAS)is proposed for the grey zone where the nonhydrostatic impact on the atmosphere is evident but not large enough to justify the necessity to include an implicit nonhydrostatic solver in an atmospheric dynamical core.The NAS is designed to replace this solver,which can be incorporated into any hydrostatic models so that existing well-developed hydrostatic models can effectively serve for a longer time.Recent advances in machine learning(ML)provide a potential tool for capturing the main complicated nonlinear-nonhydrostatic relationship.In this study,an ML approach called a neural network(NN)was adopted to select leading input features and develop the NAS.The NNs were trained and evaluated with 12-day simulation results of dry baroclinic-wave tests by the Weather Research and Forecasting(WRF)model.The forward time difference of the nonhydrostatic tendency was used as the target variable,and the five selected features were the nonhydrostatic tendency at the last time step,and four hydrostatic variables at the current step including geopotential height,pressure in two different forms,and potential temperature,respectively.Finally,a practical NAS was developed with these features and trained layer by layer at a 20-km horizontal resolution,which can accurately reproduce the temporal variation and vertical distribution of the nonhydrostatic tendency.Corrected by the NN-based NAS,the improved hydrostatic solver at different horizontal resolutions can run stably for at least one month and effectively reduce most of the nonhydrostatic errors in terms of system bias,anomaly root-mean-square error,and the error of the wave spatial pattern,which proves the feasibility and superiority of this scheme.
基金Project supported by the National Natural Science Foundation of China (Gant No.11872323)。
文摘Many networks exhibit the core/periphery structure.Core/periphery structure is a type of meso-scale structure that consists of densely connected core nodes and sparsely connected peripheral nodes.Core nodes tend to be well-connected,both among themselves and to peripheral nodes,which tend not to be well-connected to other nodes.In this brief report,we propose a new method to detect the core of a network by the centrality of each node.It is discovered that such nodes with non-negative centralities often consist in the core of the networks.The simulation is carried out on different real networks.The results are checked by the objective function.The checked results may show the effectiveness of the simulation results by the centralities of the nodes on the real networks.Furthermore,we discuss the characters of networks with the single core/periphery structure and point out the scope of the application of our method at the end of this paper.
基金the National Natural Science Foundation of Chi⁃na under Grant Nos.61671183 and 61771163.
文摘With the development of satellite communications,the number of satellite nodes is constantly increasing,which undoubtedly increases the difficulty of maintaining network security.Combining software defined network(SDN) with traditional space-based networks provides a new class of ideas for solving this problem.However,because of the highly centralized network management of the SDN controller,once the SDN controller is destroyed by network attacks,the network it manages will be paralyzed due to loss of control.One of the main security threats to SDN controllers is Distributed Denial of Service(DDoS) attacks,so how to detect DDoS attacks scientifically has become a hot topic among SDN security management.This paper proposes a DDoS attack detection method for space-based networks based on SDN architecture.This attack detection method combines the optimized Long Short-Term Memory(LSTM) deep learning model and Support Vector Machine(SVM),which can not only make classification judgments on the time series,but also achieve the purpose of detecting and judging through the flow characteristics of a period of time.In addition,it can reduce the detection time as well as the system burden.
文摘The Tianlian 1-03 satellite, the third geosynchronous data relay satellite of China, was successfully launched into space on a LM-3C launch vehicle from the Xichang Satellite Launch Center at 23:43 Beijing time on July 25. Twenty-six minutes after the liftoff, the satellite
基金National Natural Science Foundation of China (60532030, 10577005, 60625102) Innovation Foundation of Aerospace Science and Technology of China
文摘A new core-based shared tree algorithm, viz core-cluster combination-based shared tree (CCST) algorithm and the weighted version (i.e. w-CCST algorithm) are proposed in order to resolve the channel resources waste problem in typical source-based multicast routing algorithms in low earth orbit (LEO) satellite IP networks. The CCST algorithm includes the dynamic approximate center (DAC) core selection method and the core-cluster combination multicast route construction scheme. Without complicated onboard computation, the DAC method is uniquely developed for highly dynamic networks of periodical and regular movement. The core-cluster combination method takes core node as the initial core-cluster, and expands it stepwise to construct an entire multicast tree at the lowest tree cost by a shortest path scheme between the newly-generated core-cluster and surplus group members, which results in great bandwidth utilization. Moreover, the w-CCST algorithm is able to strike a balance between performance of tree cost and that of end-to-end propagation delay by adjusting the weighted factor to meet strict end-to-end delay requirements of some real-time multicast services at the expense of a slight increase in tree cost. Finally, performance comparison is conducted between the proposed algorithms and typical algorithms in LEO satellite IP networks. Simulation results show that the CCST algorithm significantly decreases the average tree cost against to the others, and also the average end-to-end propagation delay ofw-CCST algorithm is lower than that of the CCST algorithm.
基金supported by China Ministry of Education-CMCC Research Fund Project No.MCM20160104National Science and Technology Major Project No.No.2018ZX03001016+1 种基金Beijing Municipal Science and technology Commission Research Fund Project No.Z171100005217001Fundamental Research Funds for Central Universities NO.2018RC06
文摘The traffic explosion and the rising of diverse requirements lead to many challenges for traditional mobile network architecture on flexibility, scalability, and deployability. To meet new requirements in the 5 G era, service based architecture is introduced into mobile networks. The monolithic network elements(e.g., MME, PGW, etc.) are split into smaller network functions to provide customized services. However, the management and deployment of network functions in service based 5 G core network are still big challenges. In this paper, we propose a novel management architecture for 5 G service based core network based on NFV and SDN. Combined with SDN, NFV and edge computing, the proposed framework can provide distributed and on-demand deployment of network functions, service guaranteed network slicing, flexible orchestration of network functions and optimal workload allocation. Simulations are conducted to show that the proposed framework and algorithm are effective in terms of reducing network operating cost.
基金supported by the National Key R&D Program of China(2020YFB1805500)National Natural Science Foundation of China(61922017,62032003 and 61921003)。
文摘Recent developments in the aerospace industry have led to a dramatic reduction in the manufacturing and launch costs of low Earth orbit satellites.The new trend enables the paradigm shift of satelliteterrestrial integrated networks with global coverage.In particular,the integration of 5G communication systems and satellites has the potential to restructure nextgeneration mobile networks.By leveraging the network function virtualization and network slicing,the satellite 5G core networks will facilitate the coordination and management of network functions in satellite-terrestrial integrated networks.We are the first to deploy a 5G core network on a real-world satellite to investigate its feasibility.We conducted experiments to validate the satellite 5G core network functions.The validated procedures include registration and session setup procedures.The results show that the satellite 5G core network can function normally and generate correct signaling.
基金Supported by the National Natural Science Foundation of China(61307122)the University Science and Technology Innovation Team Support Project of Henan Province(13IRTTHN016)the Innovative and Training Project of Post Graduate Funding from the Henan Normal University(201310476046)
文摘To investigate wavelength response of the no core fiber(NCF)interference spectrum to concentration,a three-layer back propagation(BP)neural network model was established to optimize the concentration sensing data.In this method,the measured wavelength and the corresponding concentration were trained by a BP neural network,so that the accuracy of the measurement system was optimized.The wavelength was used as the training set and got into the input layer of the three layer BP network model which is used as the input value of the network,and the corresponding actual concentration value was used as the output value of the network,and the optimal network structure was trained.This paper discovers a preferable correlation between the predicted value and the actual value,where the former is approximately equal to the latter.The correlation coefficients of the measured and predicted values for a sucrose concentration were 1.000 89 and 1.003 94;similarly,correlations of0.999 51 and 1.018 8 for a glucose concentration were observed.The results demonstrate that the BP neural network can improve the prediction accuracy of the nonlinear relationship between the interference spectral data and the concentration in NCF sensing systems.
文摘Optical network is the infrastructure of telecommunicationnetwork. More than 95% of information istransported over optical network in China, wherecore network is the main trunk. How to increase thebit rate of the single wavelength channel, raise thetotal capacity of the DWDM system, extend theoptical transportation distance of electrical repeaterfree of the DWDM system and optical network intelligenceare key problems demanding high attention.The evolution trend of the optical core network isdescribed with some examples in this paper.
文摘In this paper, an artificial neural network method that can predict the chemical composition of deposited weld metal by CO 2 Shielded Flux Cored Wire Surfacing was studied. It is found that artificial neural network is a good approach on studying welding metallurgy processes that cannot be described by conventional mathematical methods. In the same time we explored a new way to study the no equilibrium welding metallurgy processes.
基金Sponsored by the Priority Academic Program Development Foundation of Jiangsu Higher Education Institute(Grant No. CE01-3)the NSFC for Outstanding Youth Fund (Grant No. 50725828),the NSFC for Young Scholars (Grant No. 50908046)+1 种基金the Ph. D. Programs Foundation of Ministry of Education of China (Grant No. 200802861012)the Basic Scientific & Research Fund of Southeast University (Grant No. Seucx201106)
文摘The Sonreb and Core (SRC) combined method is proposed to assess the concrete compression strength of mass concrete structures.Artificial neural network is employed together with the SRC combined method to obtain the optimal core number.The artificial neural network is trained based on data from different testing methods.The procedure of using artificial neural network to assess the concrete strength is described.It proves that the SRC combined method is superior in many aspects and artificial the presented neural network has a high efficiency and reliability.The combined method using artificial intelligence is promising in the strength assessment of mass concrete structures such as the dam,the anchor of the suspension bridge,etc.
基金supported by National Key Research and Development Program of China under Grant 2021YFE0205300Tianjin Natural Science Foundation(19JCYBJC15700)。
文摘Secure authentication between user equipment and 5G core network is a critical issue for 5G system.However,the traditional authentication protocol 5 G-AKA and the centralized key database are at risk of several security problems,e.g.key leakage,impersonation attack,MitM attack and single point of failure.In this paper,a blockchain based asymmetric authentication and key agreement protocol(BC-AKA)is proposed for distributed 5G core network.In particular,the key used in the authentication process is replaced from a symmetric key to an asymmetric key,and the database used to store keys in conventional 5G core network is replaced with a blockchain network.A proof of concept system for distributed 5G core network is built based on Ethereum and ECC-Secp256 k1,and the efficiency and effectiveness of the proposed scheme are verified by the experiment results.
基金funded by the National Key Research and Development Program of China under Grant 2019YFB1803301Beijing Natural Science Foundation(L202002).
文摘The Internet of Things(IoTs)has become an essential component of the 5th Generation(5G)network and beyond,accelerating the transition to digital society.The increasing signaling traffic generated by billions of IoT devices has placed significant strain on the 5G Core network(5GC)control plane.To address this issue,the 3rd Gener-ation Partnership Project(3GPP)first proposed a Service-Based Architecture(SBA),intending to create a flexible,scalable,and agile cloud-native 5GC.However,considering the coupling of protocol states and functions,there are still many challenges to fully utilize the benefits of the cloud computing and orchestrate the 5GC in a cloud-native manner.We propose a Message-Level StateLess Design(ML-SLD)to provide a cloud-native 5GC from an architectural standpoint in this paper.Firstly,we propose an innovative mechanism for servitization of the N2 interface to maintain the connection between Radio Access Network(RAN)and the 5GC,avoiding interruptions and dropouts of large-scale user data.Furthermore,we propose an On-demand Message Forwarding(OMF)al-gorithm to reduce the impact of cloud fluctuations on the performance of cloud-native 5GC.Finally,we create a prototype that is based on the OpenAirInterface(OAI)5G core network projects,with all Network Functions(NFs)packaged in dockers and deployed in a kubernetes-based cloud environment.Several experiments have been built with UERANSIM and Chaosblade simulation tools.The findings demonstrate the viability and efficiency of our proposed methods.
基金the National Natural Science Foundation of China(No.41274129)Chuan Qing Drilling Engineering Company's Scientific Research Project:Seismic detection technology and application of complex carbonate reservoir in Sulige Majiagou Formation and the 2018 Central Supporting Local Co-construction Fund(No.80000-18Z0140504)the Construction and Development of Universities in 2019-Joint Support for Geophysics(Double First-Class center,80000-19Z0204)。
文摘In this paper, the complete process of constructing 3D digital core by fullconvolutional neural network is described carefully. A large number of sandstone computedtomography (CT) images are used as training input for a fully convolutional neural networkmodel. This model is used to reconstruct the three-dimensional (3D) digital core of Bereasandstone based on a small number of CT images. The Hamming distance together with theMinkowski functions for porosity, average volume specifi c surface area, average curvature,and connectivity of both the real core and the digital reconstruction are used to evaluate theaccuracy of the proposed method. The results show that the reconstruction achieved relativeerrors of 6.26%, 1.40%, 6.06%, and 4.91% for the four Minkowski functions and a Hammingdistance of 0.04479. This demonstrates that the proposed method can not only reconstructthe physical properties of real sandstone but can also restore the real characteristics of poredistribution in sandstone, is the ability to which is a new way to characterize the internalmicrostructure of rocks.
文摘The developing mobile technologies have resulted in operators focusing on how to optimize their 2G networks and ensure a smooth network end, there are two approaches for upgrade: one core network with a 2G-radio network, while the other is (Mobile Switching Center) with WCDMA MSCS (Mobile Gateway) to optimize the Core network hierararchy
文摘ZTE Corporation, a leading global provider of telecommunications equipment and network solutions, announced on April 26, 2010 that it has been chosen by China Mobile to deliver its IMS core network in key Chinese provinces. The China Mobile' s commercial IMS network will boast 1.4 million lines when it is completed in three months. According to the comprehensive evaluation process by China Mobile, ZTE was ranked among the tier one IMS supplier group for the project this time.
文摘27 August 2012--ZTE Corporation has signed a deal on a packet-switched core network (CN) for KPN Group Belgium (KPNGB). KPNGB will deploy ZTE's packet-switched CN equipment, which supports unified radio access. The contract is the second of its kind between ZTE and KPNfollows from a construction project with KPN Germany (E-Plus) that was completed in September 2010.
文摘This article presents the network design schemes of CERNET2 including overall architecture, the backbone, core nodes, access solutions and the CNGI peer centers. CERNET2 connects 25 core nodes distributed in 20 cities of China at the speed of 2.5-10 Gb/s. CERNET2 has four unique features. First, its backbone adopts native IPv6 protocols, rather than IPv4/IPv6 dual stack. It is the largest pure IPv6 network in the world. Second, it provides an environment for testing and trial operation of China-made IPv6 core routers. It also allows tests of interconnection, interworking and interoperation among multiple vendors. Third, the large IPv6 address space enables the study on network addresses in a real network environment, which ensures the construction of a secured and trusted CNGI. Last, it is a test-bed for NGI applications.