Infrared and visible light image fusion technology is a hot spot in the research of multi-sensor fusion technology in recent years. Existing infrared and visible light fusion technologies need to register before fusio...Infrared and visible light image fusion technology is a hot spot in the research of multi-sensor fusion technology in recent years. Existing infrared and visible light fusion technologies need to register before fusion because of using two cameras. However, the application effect of the registration technology has yet to be improved. Hence, a novel integrative multi-spectral sensor device is proposed for infrared and visible light fusion, and by using the beam splitter prism, the coaxial light incident from the same lens is projected to the infrared charge coupled device (CCD) and visible light CCD, respectively. In this paper, the imaging mechanism of the proposed sensor device is studied with the process of the signals acquisition and fusion. The simulation experiment, which involves the entire process of the optic system, signal acquisition, and signal fusion, is constructed based on imaging effect model. Additionally, the quality evaluation index is adopted to analyze the simulation result. The experimental results demonstrate that the proposed sensor device is effective and feasible.展开更多
A crop monitoring system was developed to nondestructively monitor the crop growth status in the field.With a two channel multispectral camera with one lens,controlling platform,wireless remote control module and cont...A crop monitoring system was developed to nondestructively monitor the crop growth status in the field.With a two channel multispectral camera with one lens,controlling platform,wireless remote control module and control software,the system was able to synchronously acquire visible image(red(R),green(G),blue(B):400-700 nm)and near-infrared(NIR)image(760-1000 nm).The tomato seedlings multi-spectral images collection experiment in the greenhouse was conducted by using the developed system from the seeding stage to fruiting stage.More than 240 couples of tomato seedlings pictures were acquired with the Soil and Plant Analyzer Development(SPAD)value measured at the same time.The obtained images were available to process,and some vegetation indexes,such as normalized difference vegetation index(NDVI),ratio vegetation index(RVI)and normalized difference green index(NDGI),were calculated.Considering the SPAD value and the correlation coefficient between SPAD and other parameters in different fertilization treatments,the multiple linear regressions(MLR)model for estimating tomato seedlings chlorophyll content was built based on the average gray value in red,green,blue and NIR,vegetable indexes,NDVI,RVI and NDGI in the 33.3%(N1),66.6%(N2),and 100%(N3)nutrient levels during seeding stage and blossom and fruit stage.The R2 of the model is 0.88.The results revealed that the developed crop monitoring system provided a feasible tool to detect the growth status of tomato.More filed experiments and multi-spectral image analysis will be investigated to evaluate the crop growth status in the near future.展开更多
基金This study is supported by the Natural Science Foundation of China (Grant No. 51274150) and Shanxi Province Natural Science Foundation of China (Grant No. 201601 D011059).
文摘Infrared and visible light image fusion technology is a hot spot in the research of multi-sensor fusion technology in recent years. Existing infrared and visible light fusion technologies need to register before fusion because of using two cameras. However, the application effect of the registration technology has yet to be improved. Hence, a novel integrative multi-spectral sensor device is proposed for infrared and visible light fusion, and by using the beam splitter prism, the coaxial light incident from the same lens is projected to the infrared charge coupled device (CCD) and visible light CCD, respectively. In this paper, the imaging mechanism of the proposed sensor device is studied with the process of the signals acquisition and fusion. The simulation experiment, which involves the entire process of the optic system, signal acquisition, and signal fusion, is constructed based on imaging effect model. Additionally, the quality evaluation index is adopted to analyze the simulation result. The experimental results demonstrate that the proposed sensor device is effective and feasible.
基金948 Project(No.2011-G32)High Technology Research and Development Research Fund(No.2013AA102303).
文摘A crop monitoring system was developed to nondestructively monitor the crop growth status in the field.With a two channel multispectral camera with one lens,controlling platform,wireless remote control module and control software,the system was able to synchronously acquire visible image(red(R),green(G),blue(B):400-700 nm)and near-infrared(NIR)image(760-1000 nm).The tomato seedlings multi-spectral images collection experiment in the greenhouse was conducted by using the developed system from the seeding stage to fruiting stage.More than 240 couples of tomato seedlings pictures were acquired with the Soil and Plant Analyzer Development(SPAD)value measured at the same time.The obtained images were available to process,and some vegetation indexes,such as normalized difference vegetation index(NDVI),ratio vegetation index(RVI)and normalized difference green index(NDGI),were calculated.Considering the SPAD value and the correlation coefficient between SPAD and other parameters in different fertilization treatments,the multiple linear regressions(MLR)model for estimating tomato seedlings chlorophyll content was built based on the average gray value in red,green,blue and NIR,vegetable indexes,NDVI,RVI and NDGI in the 33.3%(N1),66.6%(N2),and 100%(N3)nutrient levels during seeding stage and blossom and fruit stage.The R2 of the model is 0.88.The results revealed that the developed crop monitoring system provided a feasible tool to detect the growth status of tomato.More filed experiments and multi-spectral image analysis will be investigated to evaluate the crop growth status in the near future.