The HY-2A satellite,which is equipped with a radar altimeter and was launched on August 16,2011,is the first Chinese marine dynamic environmental monitoring satellite.Extracting ocean tides is one of the important app...The HY-2A satellite,which is equipped with a radar altimeter and was launched on August 16,2011,is the first Chinese marine dynamic environmental monitoring satellite.Extracting ocean tides is one of the important applications of the radar altimeter data.The radar altimeter data of the HY-2A satellite from November 1,2011 to August 16,2014 are used herein to extract global ocean tides.The constants representing the tidal constituents are extracted by HY-2A RA data with harmonic analysis based on the least squares method.Considering tide aliasing issues,the analysis of the alias periods and alias synodic periods of different tidal constituents shows that only the tidal constituents M_(2),N_(2),and K_(2)are retrieved precisely by the HY-2A RA data.The derived tidal constants of the tidal constituents M_(2),N_(2)and K_(2)are compared to those of tidal gauge data and the TPXO tide model results.The comparison between the derived results and the tidal gauge data shows that the RMSEs of the tidal amplitude and phase lag are 9.6 cm and 13.34°,2.4 cm and 10.47°,and 8.1 cm and 14.19°for tidal constituents M_(2),N_(2),and K_(2),respectively.The comparisons of the semidiurnal tides with the TPXO model results show that tidal constituents have good consistency with the TPXO model results.These findings confirm the good performance of HY-2A RA for retrieving semidiurnal tides in the global ocean.展开更多
Chinese Haiyang-2(HY-2) satellite is the first Chinese marine dynamic environment satellite. The dual-frequency (Ku and C band) radar altimeter onboard HY-2 has been working effective to provide operational signif...Chinese Haiyang-2(HY-2) satellite is the first Chinese marine dynamic environment satellite. The dual-frequency (Ku and C band) radar altimeter onboard HY-2 has been working effective to provide operational significant wave height (SWH) for more than three years (October 1, 2011 to present).We validated along-track Ku-band SWH data of HY-2 satellite against National Data Buoy Center (NDBC) in-situ measurements over a time period of three years from October 1, 2011 to September 30, 2014, the root mean square error (RMSE) and mean bias of HY-2 SWH is 0.38 m and (-0.13±0.35) m, respectively. We also did cross validation against Jason-2 altimeter SWH data, the RMSE and the mean bias is 0.36m and (-0.22±0.28) m, respectively. In order to compare the statistical results between HY-2 and Jason-2 satellite SWH data, we validated the Jason-2 satellite radar altimeter along-track Ku-band SWH data against NDBC measurements using the same method. The results demonstrate the validation method in this study is scientific and the RMSE and mean bias of Jason-2 SWH data is 0.26 m and (0.00±0.26) m, respectively. We also validated both HY-2 and Jason-2 SWH data every month, the mean bias of Jason-2 SWH data almost equaled to zero all the time, while the mean bias of HY-2 SWH data was no less than -0.31m before April 2013 and dropped to zero after that time. These results indicate that the statistical results for HY-2 altimeter SWH are reliable and HY-2 altimeter along-track SWH data were steady and of high quality in the last three years. The results also indicate that HY-2 SWH data have greatly been improved and have the same accuracy with Jason-2 SWH data after April, 2013. SWH data provided by HY-2 satellite radar altimeter are useful and acceptable for ocean operational applications.展开更多
Concerning the PDRA (pulse doppler radar altimeter) designing and evaluation, owing to that the specifications of PDRA should be adaptively fixed according to the ETR (earth terrain return), and that in certain stages...Concerning the PDRA (pulse doppler radar altimeter) designing and evaluation, owing to that the specifications of PDRA should be adaptively fixed according to the ETR (earth terrain return), and that in certain stages of product evaluation of PDRA which means the designations of PDRA are successful or not, the usage of ETR are indispensable, so the terrain return from spherical earth is critically important. A complete analytic derivation of the antenna shot section model of PDRA and the bright section model constrained by pulse emitted from antenna are given. Furthermore, the doppler effect mode and the earth terrain RCF (radar crossing factor) model are constructively analyzed. Then, the computing methodology on PDRA, which are used to compute the scattering power, scattering doppler spectrum, and the scattering signal, is studied. Besides, in order to check the correctness and efficiency of the algorithm, computing examples of ETR (earth terrain return) under the supposing premises are furnished. Finally, the conclusion is drawn that the models and algorithm are rational, the computational precise is satisfactory, the cost of computing time is low.展开更多
The HY-2A satellite is China’s first independent oceanic dynamic environmental satellite,and has been operating continuously for more than six years.The satellite’s radar altimeter,which is one of the main loads on ...The HY-2A satellite is China’s first independent oceanic dynamic environmental satellite,and has been operating continuously for more than six years.The satellite’s radar altimeter,which is one of the main loads on the satellite,has the ability to realize all-weather and all-day observations of global sea-surface heights,as well as significant wave heights and sea-surface wind speeds.These observed data have been widely used in marine disaster prevention and reduction,along with resource development,maritime security and other fields.In order to achieve a comprehensive understanding of the multi-year overall observational performances of the HY-2A satellite’s radar altimeter,all of the observational data of the IGDR product from October 26,2012 to August 27,2017 were selected in this study for a comprehensive evaluation.The height measurement capability of the HY-2A satellite’s radar altimeter was evaluated using self-crossover and Jason-2 crossover methods.The height discrepancies at the self-crossover point of the HY-2A satellite’s ascending and descending orbits were also calculated.It was found that for the HY-2A satellite’s radar altimeter in global waters under the restriction conditions of ascending and descending orbits,the height anomaly differences were within a range of less than 30 cm.The absolute mean error was determined to be 5.81 cm,and the height anomaly standard deviation was 7.76 cm.Under the conditions of the observational areas being limited within a scope of 60°from the Equator,it was determined that the sea-level height anomaly differences were less than 10 cm at the junction of the ascending and descending orbits,the absolute mean error was 3.95 cm.In addition,the sea-level height anomaly standard deviation was observed to be 4.76cm.Using a mutual cross method with the Jason-2 satellite,it was found that under the conditions of the observational area being within the scope of 66°from the equator,the height anomaly differences at the junction were less than 30cm,and the absolute mean error of HY-2A and Jason-2 sea level height anomaly was 5.86 cm,with a standard deviation of 7.52 cm.It was observed that,if within the sea area the sea level height anomaly difference was limited to within 10cm,then the absolute mean error and standard deviation could reach 4.19cm and 4.98cm,respectively.It was confirmed that the HY-2A satellite’s radar altimeter had successfully reached the height measurement level of similar international altimeters.Therefore,it had the ability to meet the needs of marine scientific research and ocean circulation inversions.展开更多
To estimate the sea state bias(SSB) for radar altimeter, two nonparametric models, including a Nadaraya-Watson(NW) kernel estimator and a local linear regression(LLR) estimator, are studied based on the Jason-2 ...To estimate the sea state bias(SSB) for radar altimeter, two nonparametric models, including a Nadaraya-Watson(NW) kernel estimator and a local linear regression(LLR) estimator, are studied based on the Jason-2 altimeter data. Selecting from different combinations of the Gaussian kernel function, spherical Epanechnikov kernel function, a fixed bandwidth and a local adjustable bandwidth, it is observed that the LLR method with the spherical Epanechnikov kernel function and the local adjustable bandwidth is the optimal nonparametric model for the SSB estimation. The comparisons between the nonparametric and parametric models are conducted and the results show that the nonparametric model performs relatively better at high-latitudes of the Northern Hemisphere. This method has been applied to the HY-2A altimeter as well and the same conclusion can be obtained.展开更多
Haiyang-2A(HY-2A) is China's first ocean dynamic environment satellite and the radar altimeter is one of its main payloads. One of the main purposes of the radar altimeter is to measure the sea surface height(SSH...Haiyang-2A(HY-2A) is China's first ocean dynamic environment satellite and the radar altimeter is one of its main payloads. One of the main purposes of the radar altimeter is to measure the sea surface height(SSH). The SSH determined from the altimeter range measurements includes some range and geophysical corrections. These corrections largely affect the accuracy of the SSH measurements. The range and the geophysical corrections are reprocessed and the altimeter waveforms in HY-2A sensor interim geophysical data set records(S-IGDR) are retracked from June 1, 2014 to June 14, 2014, and the accuracy of the reprocessed SSH measurements is evaluated.The methods of the range and geophysical corrections used to reprocess HY-2A altimeter data are validated by using these methods to reprocess the Jason-2 range and geophysical corrections and comparing the results with the range and geophysical corrections in Jason-2 geophysical dataset records(GDR) product. A crossover analysis is used to evaluate the accuracy of the reprocessed HY-2A SSH measurements. The standard deviation(STD) of the crossover SSH differences for HY-2A is around 4.53 cm while the STD of the SSH differences between HY-2A and Jason-2 is around 5.22 cm. The performance of the reprocessed HY-2A SSH measurements is significantly improved with respect to the SSH measurements derived from HY-2A interim geophysical dataset records(IGDR)product. The 2015–2016 El Ni?o has been the strongest El Ni?o event since 1997–1998. The range and the geophysical corrections in HY-2A IGDR are reprocessed and sea level anomalies are used to monitor the2015–2016 El Ni?o. The results show that the HY-2A altimeter can well observe the 2015–2016 El Ni?o.展开更多
A new Suboptimal Maximum Likelihood Estimation (SMLE) algorithm based on full-deramp model and its implementation in satellite-borne radar altimeter are presented, with emphasis on the influence of both the return flu...A new Suboptimal Maximum Likelihood Estimation (SMLE) algorithm based on full-deramp model and its implementation in satellite-borne radar altimeter are presented, with emphasis on the influence of both the return fluctuation and the receiver noise on height and slope estimation precision. Some conclusions are obtained and verified by computer simulation.展开更多
For open sea conditions the sea surface roughness is described as a function of surface stress and wind speed over sea surface by Charnock relation. The sea surface roughnessn in the North-west Pacific Ocean is derive...For open sea conditions the sea surface roughness is described as a function of surface stress and wind speed over sea surface by Charnock relation. The sea surface roughnessn in the North-west Pacific Ocean is derived successfully using wind speed data estimated by the TOPEX satellite altimeter. From the results we find that: (1) the mean sea surface roughness in winter is greater than in summer; (2) compared with other sea areas, the sea surface roughness in the sea area east of Japan ( N30°- 40°, E135°- 150°) is larger than in other sea areas; (3) sea surface roughness in the South China Sea changes more greatly than that in the Bohai Sea, Yellow Sea and East China Sea.展开更多
An improved absolute calibration technology based on indirect measurements was developed through two probative experiments, the performance of which was evaluated by applying the approach to in situ sea surface height...An improved absolute calibration technology based on indirect measurements was developed through two probative experiments, the performance of which was evaluated by applying the approach to in situ sea surface height (SSH) at the Tianheng Island (tidal gauge) and the satellite nadir (GPS buoy). Using Geoid/MSS (mean sea surface) data, which accounted for a constant offset between nadir and onshore tidal gauge water levels, and TMD (tidal model driver), which canceled out the time-varying offsets, nadir SSH (sea surface height) could be indirectly acquired at an onshore tidal gauge instead of from direct offshore observation. The approach extrapolated the onshore SSH out to the offshore nadir with an accuracy of (1.88±0.20) cm and a standard deviation of 3,3 cm, which suggested that the approach presented was feasible in absolute altimeter calibration/validation (Cal/Val), and the approach enormously facilitated the obtaining SSH from the offshore nadir.展开更多
HY-2 A(Haiyang-2 A),launched in 2011,is the first ocean dynamic environment satellite of China and is equipped with a radar altimeter as one of the primary payloads.HY-2 A shifted the drift orbit in March 2016 and has...HY-2 A(Haiyang-2 A),launched in 2011,is the first ocean dynamic environment satellite of China and is equipped with a radar altimeter as one of the primary payloads.HY-2 A shifted the drift orbit in March 2016 and has been accumulating geodetic mission(GM)data for more than three years with 168-day cycle.In this paper,we present the preliminary gravity field inverted by the HY-2 A/GM data from March 2016 to December 2017 near Taiwan(21°–26°N,119°–123°E).The gravity anomaly is computed by Inverse Vening Meinesz(IVM)formula with a onedimensional FFT method during remove-restore procedure with the EGM2008 gravity model as the reference field.For comparison,CryoSat-2 altimeter data are used to inverse the gravity field near Taiwan Island by the same method.Comparing with the gravity field derived from CryoSat-2,a good agreement between the two data sets is found.The global ocean gravity models and National Geophysical Data Center(NGDC)shipboard gravity data also are used to assess the performance of HY-2 A/GM data.The evaluations show that HY-2 A and CryoSat-2 are at the same level in terms of gravity field recovery and the HY-2 A/GM altimeter-derived gravity field has an accuracy of 2.922 mGal.Therefore,we can believe that HY-2 A will be a new reliable data source for marine gravity field inversion and has the potentiality to improve the accuracy and resolution of the global marine gravity field.展开更多
Satellite altimetry has been widely used in measuring ocean topography from space. The conventional altimeter system is the nadir radar altimeter system which has the limitations of one-dimensional measurement and is ...Satellite altimetry has been widely used in measuring ocean topography from space. The conventional altimeter system is the nadir radar altimeter system which has the limitations of one-dimensional measurement and is unable to get both high temporal and spatial resolution. The InSAR altimetry system using InSAR altimeter instead of nadir radar altimeter is an improvement which can get both high cross-track and along-track resolution and wide swath. However, the conventional SAR interferometry only can achieve meter level height accuracy. This paper focuses on a method of radar echo-tracking for InSAR altimeter system in order to correct the slant range measurements and finally to improve the height measurement accuracy to several centimeters' level. Radar slant range (from observed pixels to radar antenna) estimation error affects the height measurement accuracy badly, nevertheless not considered in the conventional SAR interferometry. The proposed method is ameliorated based on the traditional echo-model used in nadir radar altimeter system, focusing on the echo signals from observed pixels with different incident angles. Simulations of sea surface height measurements are performed in the last part of this paper, and the conclusions are drawn that, with corrected slant range, the accuracy of InSAR altimetry can be much better than the conventional SAR interferometry.展开更多
The sensitivity of weather and climate system to sea ice thickness (SIT) in the Arctic is recognised from various studies. Decrease of SIT will affect atmospheric circulation, temperature, precipitation and wind speed...The sensitivity of weather and climate system to sea ice thickness (SIT) in the Arctic is recognised from various studies. Decrease of SIT will affect atmospheric circulation, temperature, precipitation and wind speed in the Arctic and remotely. Ice thermodynamics and dynamic properties depend strongly on ice and snow thickness. The heat transfer through ice critically depends on ice thickness. Long term accurate SIT records with corresponding uncertainties are required for improved seasonal weather forecast and estimate of the sea ice mass balance. Satellite radar and Laser Altimeter (LA) provide long term records of sea ice freeboard. Assuming isostatic equilibrium, SIT is retrieved from the freeboard, extracted from radar altimeter (RA) or LA, where the snow depth, density, ice and water density are input variables in the equation for hydrostatic equilibrium to derive SIT from LA or RA. Different input variables (snow depth, density, ice and water density) with unknown accuracy have been applied from various authors to retrieve SIT and Sea Ice Draft (SID) from RA or LA, leading to not comparative results. Sea ice density dependence on ice type, thermodynamic properties and freeboard is confirmed with different studies. Sensitivity analyses confirm the great impact of sea ice density, snow depth and density on accuracy of the retrieved SIT and the importance of inserting variable ice density (VID) in the equation for hydrostatic equilibrium for more accurate SIT retrieval, weather and climate forecast. The impact of sea ice density and snow depth and density on retrieved SIT from the freeboard derived from LA and RA have been analyzed in this study using the equation for hydrostatic equilibrium, statistical and sensitivity analyses. An algorithm is developed to convert the freeboard, derived from LA in SIT, inserting VID in the equation for hydrostatic equilibrium. The algorithm is validated with field, laboratory studies and collocated SIT retrieved from RA on board Envisat. The accuracy of the developed algorithm is analyzed, using statistical and uncertainty analyses. It is found that the uncertainty of the retrieved SIT from LA is decreased 7.6 times (from rhi = 59 cm for fixed ice density) if variable ice density is inserted in the equation for hydrostatic equilibrium. The SIT, which has been retrieved from the freeboard derived from LA is validated with collocated SIT derived from RA2 on Envisat, using variable ice density. The bias of the mean SIT derived from LA and RA has been reduced from -1.1 m to about one millimeter when VID is applied to retrieve SIT from LA and RA. The results and algorithms, discussed in this paper are essential contribution to SIT and SID retrieval, satellite remote sensing, cryosphere, meteorology and improved weather and climate forecast.展开更多
The calibration of the sea surface height(SSH)measured by satellite altimeters is essential to understand altimeter biases.Many factors affects the construction and maintenance of a permanent calibration site.In order...The calibration of the sea surface height(SSH)measured by satellite altimeters is essential to understand altimeter biases.Many factors affects the construction and maintenance of a permanent calibration site.In order to calibrate Chinese satellite altimetry missions,the feasibility of maintaining a calibration site based on the Qianliyan islet in Yellow Sea of China is taken into account.The related calibration facilities,such as the permanent tide gauge,GNSS reference station and meteorological station,were already operated by the Ministry of Natural Resources of China.The data could be fully used for satellite altimeter calibration with small fiscal expenditure.In addition,the location and marine environments of Qianliyan were discussed.Finally,we used the Jason-3 mission to check the possibility of calibration works.The result indicates that the brightness temperatures of three channels measured by microwave radiometer(MWR)and the derived wet tropospheric correction varies smoothly,which means the land contamination to MWR could be ignored.The high frequency waveforms at the Qianliyan site present no obvious difference from the normal waveforms received by satellite radar altimeter over the open ocean.In conclusion,the Qianliyan islet will not influence satellite altimetry observation.Following these analyses,a possible layout and mechanism of the Qianliyan calibration site are proposed.展开更多
The global bathymetry models are usually of low accuracy over the coastline of polar areas due to the harsh climatic environment and the complex topography.Satellite altimetric gravity data can be a supplement and pla...The global bathymetry models are usually of low accuracy over the coastline of polar areas due to the harsh climatic environment and the complex topography.Satellite altimetric gravity data can be a supplement and plays a key role in bathymetry modeling over these regions.The Synthetic Aperture Radar(SAR)altimeters in the missions like CryoSat-2 and Sentinel-3A/3B can relieve waveform contamination that existed in conventional altimeters and provide data with improved accuracy and spatial resolution.In this study,we investigate the potential application of SAR altimetric gravity data in enhancing coastal bathymetry,where the effects on local bathymetry modeling introduced from SAR altimetry data are quantified and evaluated.Furthermore,we study the effects on bathymetry modeling by using different scale factor calculation approaches,where a partition-wise scheme is implemented.The numerical experiment over the South Sandwich Islands near Antarctica suggests that using SARbased altimetric gravity data improves local coastal bathymetry modeling,compared with the model calculated without SAR altimetry data by a magnitude of 3:55 m within 10 km of offshore areas.Moreover,by using the partition-wise scheme for scale factor calculation,the quality of the coastal bathymetry model is improved by 7.34 m compared with the result derived from the traditional method.These results indicate the superiority of using SAR altimetry data in coastal bathymetry inversion.展开更多
Surface Water and Ocean Topography(SWOT)is a next-generation radar altimeter that offers high resolution,wide swath,imaging capabilities.It has provided free public data worldwide since December 2023.This paper aims t...Surface Water and Ocean Topography(SWOT)is a next-generation radar altimeter that offers high resolution,wide swath,imaging capabilities.It has provided free public data worldwide since December 2023.This paper aims to preliminarily analyze the detection capabilities of the Ka-band radar interferometer(KaRIn)and Nadir altimeter(NALT),which are carried out by SWOT for internal solitary waves(ISWs),and to gather other remote sensing images to validate SWOT observations.KaRIn effectively detects ISW surface features and generates surface height variation maps reflecting the modulations induced by ISWs.However,its swath width does not completely cover the entire wave packet,and the resolution of L2/L3 level products(about 2 km)cannot be used to identify ISWs with smaller wavelengths.Additionally,significant wave height(SWH)images exhibit blocky structures that are not suitable for ISW studies;sea surface height anomaly(SSHA)images display systematic leftright banding.We optimize this imbalance using detrending methods;however,more precise treatment should commence with L1-level data.Quantitative analysis based on L3-level SSHA data indicates that the average SSHA variation induced by ISWs ranges from 10 cm to 20 cm.NALTs disturbed by ISWs record unusually elevated SWH and SSHA values,rendering the data unsuitable for analysis and necessitating targeted corrections in future retracking algorithms.For the normalized radar cross section,Ku-band and four-parameter maximum likelihood estimation retracking demonstrated greater sensitivity to minor changes in the sea surface,making them more suitable for ISW detection.In conclusion,SWOT demonstrates outstanding capabilities in ISW detection,significantly advancing research on the modulation of the sea surface by ISWs and remote sensing imaging mechanisms.展开更多
基金The National Key Research and Development Program of China under contract No.2016YFC1401801.
文摘The HY-2A satellite,which is equipped with a radar altimeter and was launched on August 16,2011,is the first Chinese marine dynamic environmental monitoring satellite.Extracting ocean tides is one of the important applications of the radar altimeter data.The radar altimeter data of the HY-2A satellite from November 1,2011 to August 16,2014 are used herein to extract global ocean tides.The constants representing the tidal constituents are extracted by HY-2A RA data with harmonic analysis based on the least squares method.Considering tide aliasing issues,the analysis of the alias periods and alias synodic periods of different tidal constituents shows that only the tidal constituents M_(2),N_(2),and K_(2)are retrieved precisely by the HY-2A RA data.The derived tidal constants of the tidal constituents M_(2),N_(2)and K_(2)are compared to those of tidal gauge data and the TPXO tide model results.The comparison between the derived results and the tidal gauge data shows that the RMSEs of the tidal amplitude and phase lag are 9.6 cm and 13.34°,2.4 cm and 10.47°,and 8.1 cm and 14.19°for tidal constituents M_(2),N_(2),and K_(2),respectively.The comparisons of the semidiurnal tides with the TPXO model results show that tidal constituents have good consistency with the TPXO model results.These findings confirm the good performance of HY-2A RA for retrieving semidiurnal tides in the global ocean.
基金The Public Science and Technology Research Funds Projects of Ocean under contract Nos 201105032,201305032 and 201005030the National High Technology Research and Development Program(863 Program)of China under contract No.2013AA09A505+2 种基金Global Change and Air-Sea Interaction Project of China under contract No.GASI-03-03-01-01the International Science&Technology Cooperation Program of China under contract No.2011DFA22260the Open funds of State Key Laboratory of Satellite Ocean Environment Dynamics under contract No.SOED1411
文摘Chinese Haiyang-2(HY-2) satellite is the first Chinese marine dynamic environment satellite. The dual-frequency (Ku and C band) radar altimeter onboard HY-2 has been working effective to provide operational significant wave height (SWH) for more than three years (October 1, 2011 to present).We validated along-track Ku-band SWH data of HY-2 satellite against National Data Buoy Center (NDBC) in-situ measurements over a time period of three years from October 1, 2011 to September 30, 2014, the root mean square error (RMSE) and mean bias of HY-2 SWH is 0.38 m and (-0.13±0.35) m, respectively. We also did cross validation against Jason-2 altimeter SWH data, the RMSE and the mean bias is 0.36m and (-0.22±0.28) m, respectively. In order to compare the statistical results between HY-2 and Jason-2 satellite SWH data, we validated the Jason-2 satellite radar altimeter along-track Ku-band SWH data against NDBC measurements using the same method. The results demonstrate the validation method in this study is scientific and the RMSE and mean bias of Jason-2 SWH data is 0.26 m and (0.00±0.26) m, respectively. We also validated both HY-2 and Jason-2 SWH data every month, the mean bias of Jason-2 SWH data almost equaled to zero all the time, while the mean bias of HY-2 SWH data was no less than -0.31m before April 2013 and dropped to zero after that time. These results indicate that the statistical results for HY-2 altimeter SWH are reliable and HY-2 altimeter along-track SWH data were steady and of high quality in the last three years. The results also indicate that HY-2 SWH data have greatly been improved and have the same accuracy with Jason-2 SWH data after April, 2013. SWH data provided by HY-2 satellite radar altimeter are useful and acceptable for ocean operational applications.
文摘Concerning the PDRA (pulse doppler radar altimeter) designing and evaluation, owing to that the specifications of PDRA should be adaptively fixed according to the ETR (earth terrain return), and that in certain stages of product evaluation of PDRA which means the designations of PDRA are successful or not, the usage of ETR are indispensable, so the terrain return from spherical earth is critically important. A complete analytic derivation of the antenna shot section model of PDRA and the bright section model constrained by pulse emitted from antenna are given. Furthermore, the doppler effect mode and the earth terrain RCF (radar crossing factor) model are constructively analyzed. Then, the computing methodology on PDRA, which are used to compute the scattering power, scattering doppler spectrum, and the scattering signal, is studied. Besides, in order to check the correctness and efficiency of the algorithm, computing examples of ETR (earth terrain return) under the supposing premises are furnished. Finally, the conclusion is drawn that the models and algorithm are rational, the computational precise is satisfactory, the cost of computing time is low.
基金The National Key Research and Development Program of China under contract No.2016YFC1401004the National Natural Science Foundation of China under contract No.41406207
文摘The HY-2A satellite is China’s first independent oceanic dynamic environmental satellite,and has been operating continuously for more than six years.The satellite’s radar altimeter,which is one of the main loads on the satellite,has the ability to realize all-weather and all-day observations of global sea-surface heights,as well as significant wave heights and sea-surface wind speeds.These observed data have been widely used in marine disaster prevention and reduction,along with resource development,maritime security and other fields.In order to achieve a comprehensive understanding of the multi-year overall observational performances of the HY-2A satellite’s radar altimeter,all of the observational data of the IGDR product from October 26,2012 to August 27,2017 were selected in this study for a comprehensive evaluation.The height measurement capability of the HY-2A satellite’s radar altimeter was evaluated using self-crossover and Jason-2 crossover methods.The height discrepancies at the self-crossover point of the HY-2A satellite’s ascending and descending orbits were also calculated.It was found that for the HY-2A satellite’s radar altimeter in global waters under the restriction conditions of ascending and descending orbits,the height anomaly differences were within a range of less than 30 cm.The absolute mean error was determined to be 5.81 cm,and the height anomaly standard deviation was 7.76 cm.Under the conditions of the observational areas being limited within a scope of 60°from the Equator,it was determined that the sea-level height anomaly differences were less than 10 cm at the junction of the ascending and descending orbits,the absolute mean error was 3.95 cm.In addition,the sea-level height anomaly standard deviation was observed to be 4.76cm.Using a mutual cross method with the Jason-2 satellite,it was found that under the conditions of the observational area being within the scope of 66°from the equator,the height anomaly differences at the junction were less than 30cm,and the absolute mean error of HY-2A and Jason-2 sea level height anomaly was 5.86 cm,with a standard deviation of 7.52 cm.It was observed that,if within the sea area the sea level height anomaly difference was limited to within 10cm,then the absolute mean error and standard deviation could reach 4.19cm and 4.98cm,respectively.It was confirmed that the HY-2A satellite’s radar altimeter had successfully reached the height measurement level of similar international altimeters.Therefore,it had the ability to meet the needs of marine scientific research and ocean circulation inversions.
基金The National Key R&D Program of China under contract No.2016YFC1401004the National Natural Science Foundation of China under contract Nos 41406207,41176157 and 41406197
文摘To estimate the sea state bias(SSB) for radar altimeter, two nonparametric models, including a Nadaraya-Watson(NW) kernel estimator and a local linear regression(LLR) estimator, are studied based on the Jason-2 altimeter data. Selecting from different combinations of the Gaussian kernel function, spherical Epanechnikov kernel function, a fixed bandwidth and a local adjustable bandwidth, it is observed that the LLR method with the spherical Epanechnikov kernel function and the local adjustable bandwidth is the optimal nonparametric model for the SSB estimation. The comparisons between the nonparametric and parametric models are conducted and the results show that the nonparametric model performs relatively better at high-latitudes of the Northern Hemisphere. This method has been applied to the HY-2A altimeter as well and the same conclusion can be obtained.
文摘Haiyang-2A(HY-2A) is China's first ocean dynamic environment satellite and the radar altimeter is one of its main payloads. One of the main purposes of the radar altimeter is to measure the sea surface height(SSH). The SSH determined from the altimeter range measurements includes some range and geophysical corrections. These corrections largely affect the accuracy of the SSH measurements. The range and the geophysical corrections are reprocessed and the altimeter waveforms in HY-2A sensor interim geophysical data set records(S-IGDR) are retracked from June 1, 2014 to June 14, 2014, and the accuracy of the reprocessed SSH measurements is evaluated.The methods of the range and geophysical corrections used to reprocess HY-2A altimeter data are validated by using these methods to reprocess the Jason-2 range and geophysical corrections and comparing the results with the range and geophysical corrections in Jason-2 geophysical dataset records(GDR) product. A crossover analysis is used to evaluate the accuracy of the reprocessed HY-2A SSH measurements. The standard deviation(STD) of the crossover SSH differences for HY-2A is around 4.53 cm while the STD of the SSH differences between HY-2A and Jason-2 is around 5.22 cm. The performance of the reprocessed HY-2A SSH measurements is significantly improved with respect to the SSH measurements derived from HY-2A interim geophysical dataset records(IGDR)product. The 2015–2016 El Ni?o has been the strongest El Ni?o event since 1997–1998. The range and the geophysical corrections in HY-2A IGDR are reprocessed and sea level anomalies are used to monitor the2015–2016 El Ni?o. The results show that the HY-2A altimeter can well observe the 2015–2016 El Ni?o.
文摘A new Suboptimal Maximum Likelihood Estimation (SMLE) algorithm based on full-deramp model and its implementation in satellite-borne radar altimeter are presented, with emphasis on the influence of both the return fluctuation and the receiver noise on height and slope estimation precision. Some conclusions are obtained and verified by computer simulation.
文摘For open sea conditions the sea surface roughness is described as a function of surface stress and wind speed over sea surface by Charnock relation. The sea surface roughnessn in the North-west Pacific Ocean is derived successfully using wind speed data estimated by the TOPEX satellite altimeter. From the results we find that: (1) the mean sea surface roughness in winter is greater than in summer; (2) compared with other sea areas, the sea surface roughness in the sea area east of Japan ( N30°- 40°, E135°- 150°) is larger than in other sea areas; (3) sea surface roughness in the South China Sea changes more greatly than that in the Bohai Sea, Yellow Sea and East China Sea.
基金The Marine Public Welfare Projects of China under contract No.201105032the National High-Tech Project of China under contract No.2008AA09A403
文摘An improved absolute calibration technology based on indirect measurements was developed through two probative experiments, the performance of which was evaluated by applying the approach to in situ sea surface height (SSH) at the Tianheng Island (tidal gauge) and the satellite nadir (GPS buoy). Using Geoid/MSS (mean sea surface) data, which accounted for a constant offset between nadir and onshore tidal gauge water levels, and TMD (tidal model driver), which canceled out the time-varying offsets, nadir SSH (sea surface height) could be indirectly acquired at an onshore tidal gauge instead of from direct offshore observation. The approach extrapolated the onshore SSH out to the offshore nadir with an accuracy of (1.88±0.20) cm and a standard deviation of 3,3 cm, which suggested that the approach presented was feasible in absolute altimeter calibration/validation (Cal/Val), and the approach enormously facilitated the obtaining SSH from the offshore nadir.
基金The National Natural Science Foundation of China under contract No.41906199the Youth Innovation Project of National Space Science Center of Chinese Academy of Sciences under contract No.E0PD40012S。
文摘HY-2 A(Haiyang-2 A),launched in 2011,is the first ocean dynamic environment satellite of China and is equipped with a radar altimeter as one of the primary payloads.HY-2 A shifted the drift orbit in March 2016 and has been accumulating geodetic mission(GM)data for more than three years with 168-day cycle.In this paper,we present the preliminary gravity field inverted by the HY-2 A/GM data from March 2016 to December 2017 near Taiwan(21°–26°N,119°–123°E).The gravity anomaly is computed by Inverse Vening Meinesz(IVM)formula with a onedimensional FFT method during remove-restore procedure with the EGM2008 gravity model as the reference field.For comparison,CryoSat-2 altimeter data are used to inverse the gravity field near Taiwan Island by the same method.Comparing with the gravity field derived from CryoSat-2,a good agreement between the two data sets is found.The global ocean gravity models and National Geophysical Data Center(NGDC)shipboard gravity data also are used to assess the performance of HY-2 A/GM data.The evaluations show that HY-2 A and CryoSat-2 are at the same level in terms of gravity field recovery and the HY-2 A/GM altimeter-derived gravity field has an accuracy of 2.922 mGal.Therefore,we can believe that HY-2 A will be a new reliable data source for marine gravity field inversion and has the potentiality to improve the accuracy and resolution of the global marine gravity field.
基金funded by the National Nature Science Foundations of China(41404019,41674026)the open fund of Key Laboratory of Space Utilization,Chinese Academy of Sciences(CSUWX-A-KJ-2016-044)
文摘Satellite altimetry has been widely used in measuring ocean topography from space. The conventional altimeter system is the nadir radar altimeter system which has the limitations of one-dimensional measurement and is unable to get both high temporal and spatial resolution. The InSAR altimetry system using InSAR altimeter instead of nadir radar altimeter is an improvement which can get both high cross-track and along-track resolution and wide swath. However, the conventional SAR interferometry only can achieve meter level height accuracy. This paper focuses on a method of radar echo-tracking for InSAR altimeter system in order to correct the slant range measurements and finally to improve the height measurement accuracy to several centimeters' level. Radar slant range (from observed pixels to radar antenna) estimation error affects the height measurement accuracy badly, nevertheless not considered in the conventional SAR interferometry. The proposed method is ameliorated based on the traditional echo-model used in nadir radar altimeter system, focusing on the echo signals from observed pixels with different incident angles. Simulations of sea surface height measurements are performed in the last part of this paper, and the conclusions are drawn that, with corrected slant range, the accuracy of InSAR altimetry can be much better than the conventional SAR interferometry.
文摘The sensitivity of weather and climate system to sea ice thickness (SIT) in the Arctic is recognised from various studies. Decrease of SIT will affect atmospheric circulation, temperature, precipitation and wind speed in the Arctic and remotely. Ice thermodynamics and dynamic properties depend strongly on ice and snow thickness. The heat transfer through ice critically depends on ice thickness. Long term accurate SIT records with corresponding uncertainties are required for improved seasonal weather forecast and estimate of the sea ice mass balance. Satellite radar and Laser Altimeter (LA) provide long term records of sea ice freeboard. Assuming isostatic equilibrium, SIT is retrieved from the freeboard, extracted from radar altimeter (RA) or LA, where the snow depth, density, ice and water density are input variables in the equation for hydrostatic equilibrium to derive SIT from LA or RA. Different input variables (snow depth, density, ice and water density) with unknown accuracy have been applied from various authors to retrieve SIT and Sea Ice Draft (SID) from RA or LA, leading to not comparative results. Sea ice density dependence on ice type, thermodynamic properties and freeboard is confirmed with different studies. Sensitivity analyses confirm the great impact of sea ice density, snow depth and density on accuracy of the retrieved SIT and the importance of inserting variable ice density (VID) in the equation for hydrostatic equilibrium for more accurate SIT retrieval, weather and climate forecast. The impact of sea ice density and snow depth and density on retrieved SIT from the freeboard derived from LA and RA have been analyzed in this study using the equation for hydrostatic equilibrium, statistical and sensitivity analyses. An algorithm is developed to convert the freeboard, derived from LA in SIT, inserting VID in the equation for hydrostatic equilibrium. The algorithm is validated with field, laboratory studies and collocated SIT retrieved from RA on board Envisat. The accuracy of the developed algorithm is analyzed, using statistical and uncertainty analyses. It is found that the uncertainty of the retrieved SIT from LA is decreased 7.6 times (from rhi = 59 cm for fixed ice density) if variable ice density is inserted in the equation for hydrostatic equilibrium. The SIT, which has been retrieved from the freeboard derived from LA is validated with collocated SIT derived from RA2 on Envisat, using variable ice density. The bias of the mean SIT derived from LA and RA has been reduced from -1.1 m to about one millimeter when VID is applied to retrieve SIT from LA and RA. The results and algorithms, discussed in this paper are essential contribution to SIT and SID retrieval, satellite remote sensing, cryosphere, meteorology and improved weather and climate forecast.
基金supported by the National Natural Science Foundation of China under Grants No. 42174001
文摘The calibration of the sea surface height(SSH)measured by satellite altimeters is essential to understand altimeter biases.Many factors affects the construction and maintenance of a permanent calibration site.In order to calibrate Chinese satellite altimetry missions,the feasibility of maintaining a calibration site based on the Qianliyan islet in Yellow Sea of China is taken into account.The related calibration facilities,such as the permanent tide gauge,GNSS reference station and meteorological station,were already operated by the Ministry of Natural Resources of China.The data could be fully used for satellite altimeter calibration with small fiscal expenditure.In addition,the location and marine environments of Qianliyan were discussed.Finally,we used the Jason-3 mission to check the possibility of calibration works.The result indicates that the brightness temperatures of three channels measured by microwave radiometer(MWR)and the derived wet tropospheric correction varies smoothly,which means the land contamination to MWR could be ignored.The high frequency waveforms at the Qianliyan site present no obvious difference from the normal waveforms received by satellite radar altimeter over the open ocean.In conclusion,the Qianliyan islet will not influence satellite altimetry observation.Following these analyses,a possible layout and mechanism of the Qianliyan calibration site are proposed.
基金supported by the National Natural Science Foundation of China(No.42004008)the Natural Science Foundation of Jiangsu Province,China(No.BK20190498)+1 种基金the Fundamental Research Funds for the Central Universities(No.B220202055)the State Scholarship Fund from Chinese Scholarship Council(No.201306270014).
文摘The global bathymetry models are usually of low accuracy over the coastline of polar areas due to the harsh climatic environment and the complex topography.Satellite altimetric gravity data can be a supplement and plays a key role in bathymetry modeling over these regions.The Synthetic Aperture Radar(SAR)altimeters in the missions like CryoSat-2 and Sentinel-3A/3B can relieve waveform contamination that existed in conventional altimeters and provide data with improved accuracy and spatial resolution.In this study,we investigate the potential application of SAR altimetric gravity data in enhancing coastal bathymetry,where the effects on local bathymetry modeling introduced from SAR altimetry data are quantified and evaluated.Furthermore,we study the effects on bathymetry modeling by using different scale factor calculation approaches,where a partition-wise scheme is implemented.The numerical experiment over the South Sandwich Islands near Antarctica suggests that using SARbased altimetric gravity data improves local coastal bathymetry modeling,compared with the model calculated without SAR altimetry data by a magnitude of 3:55 m within 10 km of offshore areas.Moreover,by using the partition-wise scheme for scale factor calculation,the quality of the coastal bathymetry model is improved by 7.34 m compared with the result derived from the traditional method.These results indicate the superiority of using SAR altimetry data in coastal bathymetry inversion.
基金The National Natural Science Foundation of China under contract Nos U2006207 and 42006164.
文摘Surface Water and Ocean Topography(SWOT)is a next-generation radar altimeter that offers high resolution,wide swath,imaging capabilities.It has provided free public data worldwide since December 2023.This paper aims to preliminarily analyze the detection capabilities of the Ka-band radar interferometer(KaRIn)and Nadir altimeter(NALT),which are carried out by SWOT for internal solitary waves(ISWs),and to gather other remote sensing images to validate SWOT observations.KaRIn effectively detects ISW surface features and generates surface height variation maps reflecting the modulations induced by ISWs.However,its swath width does not completely cover the entire wave packet,and the resolution of L2/L3 level products(about 2 km)cannot be used to identify ISWs with smaller wavelengths.Additionally,significant wave height(SWH)images exhibit blocky structures that are not suitable for ISW studies;sea surface height anomaly(SSHA)images display systematic leftright banding.We optimize this imbalance using detrending methods;however,more precise treatment should commence with L1-level data.Quantitative analysis based on L3-level SSHA data indicates that the average SSHA variation induced by ISWs ranges from 10 cm to 20 cm.NALTs disturbed by ISWs record unusually elevated SWH and SSHA values,rendering the data unsuitable for analysis and necessitating targeted corrections in future retracking algorithms.For the normalized radar cross section,Ku-band and four-parameter maximum likelihood estimation retracking demonstrated greater sensitivity to minor changes in the sea surface,making them more suitable for ISW detection.In conclusion,SWOT demonstrates outstanding capabilities in ISW detection,significantly advancing research on the modulation of the sea surface by ISWs and remote sensing imaging mechanisms.