期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Shadow Detection Method Based on HMRF with Soft Edges for High-Resolution Remote-Sensing Images
1
作者 Wenying Ge 《Journal of Signal and Information Processing》 2019年第4期200-210,共11页
Shadow detection is a crucial task in high-resolution remote-sensing image processing. Various shadow detection methods have been explored during the last decades. These methods did improve the detection accuracy but ... Shadow detection is a crucial task in high-resolution remote-sensing image processing. Various shadow detection methods have been explored during the last decades. These methods did improve the detection accuracy but are still not robust enough to get satisfactory results for failing to extract enough information from the original images. To take full advantage of various features of shadows, a new method combining edges information with the spectral and spatial information is proposed in this paper. As known, edge is one of the most important characteristics in the high-resolution remote-sensing images. Unfortunately, in shadow detection, it is a high-risk strategy to determine whether a pixel is the edge or not strictly because intensity values on shadow boundaries are always between those in shadow and non-shadow areas. Therefore, a soft edge description model is developed to describe the degree of each pixel belonging to the edges or not. Sequentially, the soft edge description is incorporating to a fuzzy clustering procedure based on HMRF (Hidden Markov Random Fields), in which more appropriate spatial contextual information can be used. More concretely, it consists of two components: the soft edge description model and an iterative shadow detection algorithm. Experiments on several remote sensing images have shown that the proposed method can obtain more accurate shadow detection results. 展开更多
关键词 SHADOW Detection SOFT EDGES CLUSTERING remote-sensing images
下载PDF
Influences of Atmospheric Turbulence on Image Resolution of Airborne and Space-Borne Optical Remote Sensing System 被引量:2
2
作者 张晓芳 俞信 阎吉祥 《Journal of Beijing Institute of Technology》 EI CAS 2006年第4期457-461,共5页
A new way is proposed to evaluate the influence of atmospheric turbulence on image resolution of airborne and space-borne optical remote sensing system, which is called as arrival angle-method. Applying this method, s... A new way is proposed to evaluate the influence of atmospheric turbulence on image resolution of airborne and space-borne optical remote sensing system, which is called as arrival angle-method. Applying this method, some engineering examples are selected to analyze the turbulence influences on image resolution based on three different atmospheric turbulence models quantificationally, for the airborne remote sensing system, the resolution errors caused by the atmospheric turbulence are less than 1 cm, and for the space-borne remote sensing system, the errors are around 1 cm. The results are similar to that obtained by the previous Friedmethod. Compared with the Fried-method, the arrival angle-method is rather simple and can be easily used in engineering fields. 展开更多
关键词 atmospheric turbulence coherence length arrival angle-method airborne or space-borne optical remote sensing system image resolution
下载PDF
k-NN Based Bypass Entropy and Mutual Information Estimation for Incremental Remote-Sensing Image Compressibility Evaluation 被引量:2
3
作者 Xijia Liu Xiaoming Tao +1 位作者 Yiping Duan Ning Ge 《China Communications》 SCIE CSCD 2017年第8期54-62,共9页
Incremental image compression techniques using priori information are of significance to deal with the explosively increasing remote-sensing image data. However, the potential benefi ts of priori information are still... Incremental image compression techniques using priori information are of significance to deal with the explosively increasing remote-sensing image data. However, the potential benefi ts of priori information are still to be evaluated quantitatively for effi cient compression scheme designing. In this paper, we present a k-nearest neighbor(k-NN) based bypass image entropy estimation scheme, together with the corresponding mutual information estimation method. Firstly, we apply the k-NN entropy estimation theory to split image blocks, describing block-wise intra-frame spatial correlation while avoiding the curse of dimensionality. Secondly, we propose the corresponding mutual information estimator based on feature-based image calibration and straight-forward correlation enhancement. The estimator is designed to evaluate the compression performance gain of using priori information. Numerical results on natural and remote-sensing images show that the proposed scheme obtains an estimation accuracy gain by 10% compared with conventional image entropy estimators. Furthermore, experimental results demonstrate both the effectiveness of the proposed mutual information evaluation scheme, and the quantitative incremental compressibility by using the priori remote-sensing frames. 展开更多
关键词 remote-sensing incremental image compression entropy mutual information
下载PDF
Robustness Evaluation of Remote-Sensing Image Feature Detectors with TH Priori-Information Data Set
4
作者 Yiping Duan Xiaoming Tao +1 位作者 Xijia Liu Ning Ge 《China Communications》 SCIE CSCD 2020年第10期218-228,共11页
In this paper,we build a remote-sensing satellite imagery priori-information data set,and propose an approach to evaluate the robustness of remote-sensing image feature detectors.The building TH Priori-Information(TPI... In this paper,we build a remote-sensing satellite imagery priori-information data set,and propose an approach to evaluate the robustness of remote-sensing image feature detectors.The building TH Priori-Information(TPI)data set with 2297 remote sensing images serves as a standardized high-resolution data set for studies related to remote-sensing image features.The TPI contains 1)raw and calibrated remote-sensing images with high spatial and temporal resolutions(up to 2 m and 7 days,respectively),and 2)a built-in 3-D target area model that supports view position,view angle,lighting,shadowing,and other transformations.Based on TPI,we further present a quantized approach,including the feature recurrence rate,the feature match score,and the weighted feature robustness score,to evaluate the robustness of remote-sensing image feature detectors.The quantized approach gives general and objective assessments of the robustness of feature detectors under complex remote-sensing circumstances.Three remote-sensing image feature detectors,including scale-invariant feature transform(SIFT),speeded up robust features(SURF),and priori information based robust features(PIRF),are evaluated using the proposed approach on the TPI data set.Experimental results show that the robustness of PIRF outperforms others by over 6.2%. 展开更多
关键词 remote-sensing TH data set image feature robustness evaluation
下载PDF
Methods for Enhancing Geological Structures inSpectral Spatial Difference—Based on Remote-Sensing Image
5
《Journal of Earth Science》 SCIE CAS CSCD 2000年第2期57-57,共1页
关键词 Based on remote-sensing image Methods for Enhancing Geological Structures inSpectral Spatial Difference
下载PDF
Effects of climate change on potential habitats of the cold temperate coniferous forest in Yunnan province, southwestern China 被引量:5
6
作者 LIWang-jun PENG Ming-chun +7 位作者 Motoki HIGA Nobuyuki TANAKA Tetsuya MATSUI Cindy Q. TANG OU Xiao-kun ZHOU Rui-wu WANG Chong-yun YAN Hai-zhong 《Journal of Mountain Science》 SCIE CSCD 2016年第8期1411-1422,共12页
We built a classification tree (CT) model to estimate climatic factors controlling the cold temperate coniferous forest (CTCF) distributions in Yunnan province and to predict its potential habitats under the curre... We built a classification tree (CT) model to estimate climatic factors controlling the cold temperate coniferous forest (CTCF) distributions in Yunnan province and to predict its potential habitats under the current and future climates, using seven climate change scenarios, projected over the years of 2070-2099. The accurate CT model on CTCFs showed that minimum temperature of coldest month (TMW) was the overwhelmingly potent factor among the six climate variables. The areas of TMW〈-4.05 were suitable habitats of CTCF, and the areas of -1.35 〈 TMW were non-habitats, where temperate conifer and broad-leaved mixed forests (TCBLFs) were distribute in lower elevation, bordering on the CTCF. Dominant species of Abies, Picea, and Larix in the CTCFs, are more tolerant to winter coldness than Tsuga and broad-leaved trees including deciduous broad-leaved Acer and Betula, evergreen broad- leaved Cyclobalanopsis and Lithocarpus in TCBLFs. Winter coldness may actually limit the cool-side distributions of TCBLFs in the areas between -1.35℃ and -4.05℃, and the warm-side distributions of CTCFs may be controlled by competition to the species of TCBLFs. Under future climate scenarios, the vulnerable area, where current potential (suitable + marginal) habitats (80,749 km^2) shift to non-habitats, was predicted to decrease to 55.91% (45,053 km^2) of the current area. Inferring from the current vegetation distribution pattern, TCBLFs will replace declining CTCFs. Vulnerable areas predicted by models are important in determining priority of ecosystem conservation. 展开更多
关键词 Classification tree Climate scenarios Vulnerable area ABIES PICEA LARIX Evergreenbroad-leaved tree ALOS remote-sensing images
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部