Low-dimensional halide perovskites have become the most promising candidates for X-ray imaging,yet the issues of the poor chemical stability of hybrid halide perovskite,the high poisonousness of lead halides and the r...Low-dimensional halide perovskites have become the most promising candidates for X-ray imaging,yet the issues of the poor chemical stability of hybrid halide perovskite,the high poisonousness of lead halides and the relatively low detectivity of the lead-free halide perovskites which seriously restrain its commercialization.Here,we developed a solution inverse temperature crystal growth(ITCG)method to bring-up high quality Cs_(3)Cu_(2)I_(5)crystals with large size of centimeter order,in which the oleic acid(OA)is introduced as an antioxidative ligand to inhibit the oxidation of cuprous ions effieiently,as well as to decelerate the crystallization rate remarkalby.Based on these fine crystals,the vapor deposition technique is empolyed to prepare high quality Cs_(3)Cu_(2)I_(5)films for efficient X-ray imaging.Smooth surface morphology,high light yields and short decay time endow the Cs_(3)Cu_(2)I_(5)films with strong radioluminescence,high resolution(12 lp/mm),low detection limits(53 nGyair/s)and desirable stability.Subsequently,the Cs_(3)Cu_(2)I_(5)films have been applied to the practical radiography which exhibit superior X-ray imaging performance.Our work provides a paradigm to fabricate nonpoisonous and chemically stable inorganic halide perovskite for X-ray imaging.展开更多
Inversion techniques are conducted based on the tangential x-ray crystal spectroscopy(TXCS)geometry on EAST to obtain the local profiles of ion temperature(Ti)and toroidal rotation velocity(vt).Firstly,local emissivit...Inversion techniques are conducted based on the tangential x-ray crystal spectroscopy(TXCS)geometry on EAST to obtain the local profiles of ion temperature(Ti)and toroidal rotation velocity(vt).Firstly,local emissivity profiles of the impurity argon are obtained using the asymmetrical Abel inversion.Then,the local vt and Ti profiles are calculated by considering the local emissivity profiles and the TXCS detailed geometry.In addition,how the changes in the vt profiles affect the accuracy in the Ti profiles is discussed in detail.It is also found that the lineintegrated Ti profiles are becoming less accurate with the increase in the radial gradient in the local vt profiles.Nonetheless,accurate Ti radial profiles are reconstructed after considering the effects of the emissivity and velocity,which are verified by comparing the inverted vt and Ti profiles with those local profile measurements from the Charge eXchange Recombination Spectroscopy(CXRS)on EAST.展开更多
Ferroelastic hybrid perovskite materials have been revealed the significance in the applications of switches,sensors,actuators,etc.However,it remains a challenge to design high-temperature ferroelastic to meet the req...Ferroelastic hybrid perovskite materials have been revealed the significance in the applications of switches,sensors,actuators,etc.However,it remains a challenge to design high-temperature ferroelastic to meet the requirements for the practical applications.Herein,we reported an one-dimensional organicinorganic hybrid perovskites(OIHP)(3-methylpyrazolium)CdCl_(3)(3-MBCC),which possesses a mmmF2/m ferroelastic phase transition at 263 K.Moreover,utilizing crystal engineering,we replace-CH_(3) with-NH_(2) and-H,which increases the intermolecular force between organic cations and inorganic frameworks.The phase transition temperature of(3-aminopyrazolium)CdCl_(3)(3-ABCC),and(pyrazolium)CdCl_(3)(BCC)increased by 73 K and 10 K,respectively.Particularly,BCC undergoes an unconventional inverse temperature symmetry breaking(ISTB)ferroelastic phase transition around 273 K.Differently,it transforms from a high symmetry low-temperature paraelastic phase(point group 2/m)to a low symmetry high-temperature ferroelastic phase(point group ī)originating from the rare mechanism of displacement of organic cations phase transition.It means that crystal BCC retains in ferroelastic phase above 273 K until melting point(446 K).Furthermore,characteristic ferroelastic domain patterns on crystal BCC are confirmed with polarized optical microscopy.Our study enriches the molecular mechanism of ferroelastics in the family of organic-inorganic hybrids and opens up a new avenue for exploring high-temperature ferroic materials.展开更多
The influence of temperature on the inverse Hall-Petch effect in nanocrystalline (NC) materials is investigated using phase field crystal simulation method. Simulated results indicate that the inverse Hall-Petch eff...The influence of temperature on the inverse Hall-Petch effect in nanocrystalline (NC) materials is investigated using phase field crystal simulation method. Simulated results indicate that the inverse Hall-Petch effect in NC materials becomes weakened at low temperature. The results also show that the change in microscopic deformation mechanism with temperature variation is the main reason for the weakening of the inverse Hall-Petch effect. At elevated temperature, grain rotation and grain boundary (GB) migration seriously reduce the yield stress so that the NC materials exhibit the inverse Hall-Petch effect. However, at low temperature, both grain rotation and GB migration occur with great difficulty, instead, the dislocations nucleated from the cusp of serrated GBs become active. The lack of grain rotation and GB migration during deformation is mainly responsible for the weakening of the inverse Hall-Petch effect. Furthermore, it is found that since small grain size is favorable for GB migration, the degree of weakening decreases with decreasing average grain size at low temperature.展开更多
基金the financially support of the National Natural Science Foundation of China(12164051)the Joint Foundation of Provincial Science and Technology Department-Double First-class Construction of Yunnan University(2019FY003016)+4 种基金the Young Top Talent Project of Yunnan Province(YNWR-QNBJ-2018-229)the financially support by Yunnan Major Scientific and Technological Projects(202202AG050016)Advanced Analysis and Measurement Center of Yunnan University for the sample characterization service and the Postgraduate Research and Innovation Foundation of Yunnan University(2021Y036)the financially support of the National Natural Science Foundation of China(62064013)the Application Basic Research Project of Yunnan Province[2019FB130]。
文摘Low-dimensional halide perovskites have become the most promising candidates for X-ray imaging,yet the issues of the poor chemical stability of hybrid halide perovskite,the high poisonousness of lead halides and the relatively low detectivity of the lead-free halide perovskites which seriously restrain its commercialization.Here,we developed a solution inverse temperature crystal growth(ITCG)method to bring-up high quality Cs_(3)Cu_(2)I_(5)crystals with large size of centimeter order,in which the oleic acid(OA)is introduced as an antioxidative ligand to inhibit the oxidation of cuprous ions effieiently,as well as to decelerate the crystallization rate remarkalby.Based on these fine crystals,the vapor deposition technique is empolyed to prepare high quality Cs_(3)Cu_(2)I_(5)films for efficient X-ray imaging.Smooth surface morphology,high light yields and short decay time endow the Cs_(3)Cu_(2)I_(5)films with strong radioluminescence,high resolution(12 lp/mm),low detection limits(53 nGyair/s)and desirable stability.Subsequently,the Cs_(3)Cu_(2)I_(5)films have been applied to the practical radiography which exhibit superior X-ray imaging performance.Our work provides a paradigm to fabricate nonpoisonous and chemically stable inorganic halide perovskite for X-ray imaging.
基金supported by National Natural Science Foundation of China(Nos.12175278 and 12205072)the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)+3 种基金Major Science and Technology Infrastructure Maintenance and Reconstruction Projects of the Chinese Academy of Sciences(2021),the University Synergy Innovation Program of Anhui Province(No.GXXT-2021-029)Anhui Provincial Key Research and Development Project(No.202104a06020021)Open Fund of the Magnetic Confinement Fusion Laboratory of Anhui Province(No.2021AMF01002)the National Magnetic Confinement Fusion Science Program of China(Nos.2019YFE03040000 and 2018YFE0303103).
文摘Inversion techniques are conducted based on the tangential x-ray crystal spectroscopy(TXCS)geometry on EAST to obtain the local profiles of ion temperature(Ti)and toroidal rotation velocity(vt).Firstly,local emissivity profiles of the impurity argon are obtained using the asymmetrical Abel inversion.Then,the local vt and Ti profiles are calculated by considering the local emissivity profiles and the TXCS detailed geometry.In addition,how the changes in the vt profiles affect the accuracy in the Ti profiles is discussed in detail.It is also found that the lineintegrated Ti profiles are becoming less accurate with the increase in the radial gradient in the local vt profiles.Nonetheless,accurate Ti radial profiles are reconstructed after considering the effects of the emissivity and velocity,which are verified by comparing the inverted vt and Ti profiles with those local profile measurements from the Charge eXchange Recombination Spectroscopy(CXRS)on EAST.
基金support from the National Natural Science Foundation of China(No.22175079)support from the National Natural Science Foundation of China(No.22205087)+2 种基金the Open Project Program of Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry,Jiangxi University of Science and Technology(No.20212BCD42018)National Natural Science Foundation of China(No.22275075)Natural Science Foundation of Jiangxi Province(Nos.20204BCJ22015 and 20202ACBL203001).
文摘Ferroelastic hybrid perovskite materials have been revealed the significance in the applications of switches,sensors,actuators,etc.However,it remains a challenge to design high-temperature ferroelastic to meet the requirements for the practical applications.Herein,we reported an one-dimensional organicinorganic hybrid perovskites(OIHP)(3-methylpyrazolium)CdCl_(3)(3-MBCC),which possesses a mmmF2/m ferroelastic phase transition at 263 K.Moreover,utilizing crystal engineering,we replace-CH_(3) with-NH_(2) and-H,which increases the intermolecular force between organic cations and inorganic frameworks.The phase transition temperature of(3-aminopyrazolium)CdCl_(3)(3-ABCC),and(pyrazolium)CdCl_(3)(BCC)increased by 73 K and 10 K,respectively.Particularly,BCC undergoes an unconventional inverse temperature symmetry breaking(ISTB)ferroelastic phase transition around 273 K.Differently,it transforms from a high symmetry low-temperature paraelastic phase(point group 2/m)to a low symmetry high-temperature ferroelastic phase(point group ī)originating from the rare mechanism of displacement of organic cations phase transition.It means that crystal BCC retains in ferroelastic phase above 273 K until melting point(446 K).Furthermore,characteristic ferroelastic domain patterns on crystal BCC are confirmed with polarized optical microscopy.Our study enriches the molecular mechanism of ferroelastics in the family of organic-inorganic hybrids and opens up a new avenue for exploring high-temperature ferroic materials.
基金financially supported by the National Natural Science Foundation of China(Nos.51174168 and 51274167)Northwestern Polytechnical University Foundation for Fundamental Research(No.NPU-FFR-JC20120222)
文摘The influence of temperature on the inverse Hall-Petch effect in nanocrystalline (NC) materials is investigated using phase field crystal simulation method. Simulated results indicate that the inverse Hall-Petch effect in NC materials becomes weakened at low temperature. The results also show that the change in microscopic deformation mechanism with temperature variation is the main reason for the weakening of the inverse Hall-Petch effect. At elevated temperature, grain rotation and grain boundary (GB) migration seriously reduce the yield stress so that the NC materials exhibit the inverse Hall-Petch effect. However, at low temperature, both grain rotation and GB migration occur with great difficulty, instead, the dislocations nucleated from the cusp of serrated GBs become active. The lack of grain rotation and GB migration during deformation is mainly responsible for the weakening of the inverse Hall-Petch effect. Furthermore, it is found that since small grain size is favorable for GB migration, the degree of weakening decreases with decreasing average grain size at low temperature.