Traditional research believes that the filling body can effectively control stress concentration while ignoring the problems of unknown stability and the complex and changeable stress distribution of the filling body...Traditional research believes that the filling body can effectively control stress concentration while ignoring the problems of unknown stability and the complex and changeable stress distribution of the filling body–surrounding rock combination under high-stress conditions.Current monitoring data processing methods cannot fully consider the complexity of monitoring objects,the diversity of monitoring methods,and the dynamics of monitoring data.To solve this problem,this paper proposes a phase space reconstruction and stability prediction method to process heterogeneous information of backfill–surrounding rock combinations.The three-dimensional monitoring system of a large-area filling body–surrounding rock combination in Longshou Mine was constructed by using drilling stress,multipoint displacement meter,and inclinometer.Varied information,such as the stress and displacement of the filling body–surrounding rock combination,was continuously obtained.Combined with the average mutual information method and the false nearest neighbor point method,the phase space of the heterogeneous information of the filling body–surrounding rock combination was then constructed.In this paper,the distance between the phase point and its nearest point was used as the index evaluation distance to evaluate the stability of the filling body–surrounding rock combination.The evaluated distances(ED)revealed a high sensitivity to the stability of the filling body–surrounding rock combination.The new method was then applied to calculate the time series of historically ED for 12 measuring points located at Longshou Mine.The moments of mutation in these time series were at least 3 months ahead of the roadway return dates.In the ED prediction experiments,the autoregressive integrated moving average model showed a higher prediction accuracy than the deep learning models(long short-term memory and Transformer).Furthermore,the root-mean-square error distribution of the prediction results peaked at 0.26,thus outperforming the no-prediction method in 70%of the cases.展开更多
20th century physics experimentally established beyond doubt the fact that moving clocks read differently from “static” clocks. This fact is typically interpreted as support for special relativity. On the other hand...20th century physics experimentally established beyond doubt the fact that moving clocks read differently from “static” clocks. This fact is typically interpreted as support for special relativity. On the other hand, the same century produced proof that clocks at various locations in the gravitational field also read differently, and this fact is explained by general relativity, which is, in general, not Lorentz transformable. This paper establishes a common framework for the physics of clocks in these different situations.展开更多
Recent research challenges in the wireless communication include the usage of diversity and efficient coding to improve data transmission quality and spectral efficiency. Space diversity uses multiple transmitting and...Recent research challenges in the wireless communication include the usage of diversity and efficient coding to improve data transmission quality and spectral efficiency. Space diversity uses multiple transmitting and/or receiving antennas to create independent fading channels without penalty in bandwidth efficiency. Space-time block coding is an encoding scheme for communication over Rayleigh fading channels using multiple transmitting antennas. Space-time block codes from complex orthogonal designs exist only for two transmitting antennas. This paper generalizes a new complex orthogonal space-time block code for four transmitting antennas, whose decoding complexity is very low. Simulations show that the generalized complex orthogonal space-time block code has low bit error rate, full rate and possibly large diversity.展开更多
A covariant theory of gravitation in flat space-time is stated and compared with general relativity. The results of the theory of gravitation in flat space-time and of general relativity agree for weak gravitational f...A covariant theory of gravitation in flat space-time is stated and compared with general relativity. The results of the theory of gravitation in flat space-time and of general relativity agree for weak gravitational fields to low approximations. For strong fields the results of the two theories deviate from one another. Flat space-time theory of gravitation gives under some natural assumptions non-singular cosmological models with a flat space. The universe contracts to a positive minimum and then it expands for all times. Shortly, after the minimum is reached, the cosmological models of two theories approximately agree with one another if models in general relativity with zero curvature are considered. A flat space is proved by experiments.展开更多
A new high-order accurate staggered semi-implicit space-time discontinuous Galerkin(DG)method is presented for the simulation of viscous incompressible flows on unstructured triangular grids in two space dimensions.Th...A new high-order accurate staggered semi-implicit space-time discontinuous Galerkin(DG)method is presented for the simulation of viscous incompressible flows on unstructured triangular grids in two space dimensions.The staggered DG scheme defines the discrete pressure on the primal triangular mesh,while the discrete velocity is defined on a staggered edge-based dual quadrilateral mesh.In this paper,a new pair of equal-order-interpolation velocity-pressure finite elements is proposed.On the primary triangular mesh(the pressure elements),the basis functions are piecewise polynomials of degree N and are allowed to jump on the boundaries of each triangle.On the dual mesh instead(the velocity elements),the basis functions consist in the union of piecewise polynomials of degree N on the two subtriangles that compose each quadrilateral and are allowed to jump only on the dual element boundaries,while they are continuous inside.In other words,the basis functions on the dual mesh arc built by continuous finite elements on the subtriangles.This choice allows the construction of an efficient,quadrature-free and memory saving algorithm.In our coupled space-time pressure correction formulation for the incompressible Navier-Stokes equations,the arbitrary high order of accuracy in time is achieved through tire use of time-dependent test and basis functions,in combination with simple and efficient Picard iterations.Several numerical tests on classical benchmarks confirm that the proposed method outperforms existing staggered semi-implicit space-time DG schemes,not only from a computer memory point of view,but also concerning the computational time.展开更多
The 95.5 percent of discrepancy between theoretical prediction based on Einstein’s theory of relativity and the accurate cosmological measurement of WMAP and various supernova analyses is resolved classically using N...The 95.5 percent of discrepancy between theoretical prediction based on Einstein’s theory of relativity and the accurate cosmological measurement of WMAP and various supernova analyses is resolved classically using Newtonian mechanics in conjunction with a fractal Menger sponge space proposal. The new energy equation is thus based on the familiar kinetic energy of Newtonian mechanics scaled classically by a ratio relating our familiar three dimensional space homology to that of a Menger sponge. The remarkable final result is an energy equation identical to that of Einstein’s E=mc2 but divided by 22 so that our new equation reads as . Consequently the energy Lorentz-like reduction factor of percent is in astonishing agreement with cosmological measurements which put the hypothetical dark energy including dark matter at percent of the total theoretical value. In other words our analysis confirms the cosmological data putting the total value of measured ordinary matter and ordinary energy of the entire universe at 4.5 percent. Thus ordinary positive energy which can be measured using conventional methods is the energy of the quantum particle modeled by the Zero set in five dimensions. Dark energy on the other hand is the absolute value of the negative energy of the quantum Schrodinger wave modeled by the empty set also in five dimensions.展开更多
In this paper, we design and analyze a space-time spectral method for the subdiffusion equation.Here, we are facing two difficulties. The first is that the solutions of this equation are usually singular near the init...In this paper, we design and analyze a space-time spectral method for the subdiffusion equation.Here, we are facing two difficulties. The first is that the solutions of this equation are usually singular near the initial time. Consequently, traditional high-order numerical methods in time are inefficient. The second obstacle is that the resulting system of the space-time spectral approach is usually large and time-consuming to solve. We aim at overcoming the first difficulty by proposing a novel approach in time, which is based on variable transformation techniques. Suitable ψ-fractional Sobolev spaces and a new variational framework are introduced to establish the well-posedness of the associated variational problem. This allows us to construct our space-time spectral method using a combination of temporal generalized Jacobi polynomials(GJPs) and spatial Legendre polynomials. For the second difficulty, we propose a fast algorithm to effectively solve the resulting linear system. The fast algorithm makes use of a matrix diagonalization in space and QZ decomposition in time. Our analysis and numerical experiments show that the proposed method is exponentially convergent with respect to the polynomial degrees in both space and time directions, even though the exact solution has very limited regularity.展开更多
Based on the data of field measurement and drilling in the Tongling area, a series of numerical simulations are carried out by using the 'Surplus Space Method' (SSM), which is first put forward in this paper a...Based on the data of field measurement and drilling in the Tongling area, a series of numerical simulations are carried out by using the 'Surplus Space Method' (SSM), which is first put forward in this paper and applied to predict the shallow-seated magmatic bodies. The results of the numerical simulations show the existence and the 3-D shape of a conical magmatic structure at a depth of-1000 m beneath the center of the area: its top offsets southwards and bifurcates to several branches, while its lower part stretches northeastwards and contracts rapidly to a point at about -1000 m depth. This point is reckoned to be a 'sink' of magma system, transferring ore materials and heat energy from the deep magma chamber to the sub-surface apophyses. The preliminary application of the SSM proves that it may be developed as a new detection means for determining the existence of shallow-seated magmatic bodies and analyzing their three-dimensional features.展开更多
In large-scale deer farming image analysis,K-means or maximum between-class variance(Otsu)algorithms can be used to distinguish the deer from the background.However,in an actual breeding environment,the barbed wire or...In large-scale deer farming image analysis,K-means or maximum between-class variance(Otsu)algorithms can be used to distinguish the deer from the background.However,in an actual breeding environment,the barbed wire or chain-link fencing has a certain isolating effect on the deer which greatly interferes with the identification of the individual deer.Also,when the target and background grey values are similar,the multiple background targets cannot be completely separated.To better identify the posture and behaviour of deer in a deer shed,we used digital image processing to separate the deer from the background.To address the problems mentioned above,this paper proposes an adaptive threshold segmentation algorithm based on color space.First,the original image is pre-processed and optimized.On this basis,the data are enhanced and contrasted.Next,color space is used to extract the several backgrounds through various color channels,then the adaptive space segmentation of the extracted part of the color space is performed.Based on the segmentation effect of the traditional Otsu algorithm,we designed a comparative experiment that divided the four postures of turning,getting up,lying,and standing,and successfully separated multiple target deer from the background.Experimental results show that compared with K-means,Otsu and hue saturation value(HSV)+K-means,this method is better in performance and accuracy for adaptive segmentation of deer in artificial breeding scenes and can be used to separate artificially cultivated deer from their backgrounds.Both the subjective and objective aspects achieved good segmentation results.This article lays a foundation for the effective identification of abnormal behaviour in sika deer.展开更多
The dynamics, stability and control problem of a kind of infinite dimensional system are studied in the functional space with the method of modern Mathematics. First, the dynamical control model of the distributed par...The dynamics, stability and control problem of a kind of infinite dimensional system are studied in the functional space with the method of modern Mathematics. First, the dynamical control model of the distributed parameter system with multi-body flexible and multi-topological structure was established which has damping, gyroscopic parts and constrained damping. Secondly, the necessary and sufficient condition of controllability and observability, the stability theory and asymptotic property of the system were obtained. These results expand the theory of the field about the dynamics and control of the system with multi-body flexible structure, and have important engineering significance.展开更多
Silver nitrate is sometimes used as a means of chemicalcauterization for control of minor bleeding and management of hypergranulation tissue following bedside head and neck procedures. There are only few reports avail...Silver nitrate is sometimes used as a means of chemicalcauterization for control of minor bleeding and management of hypergranulation tissue following bedside head and neck procedures. There are only few reports available on the imaging appearance of silver nitrate and its potential to mimic a foreign body. We report a case of a patient presenting with dysphagia, odynophagia, and fever following dental work who had a peritonsillar incision and drainage for treatment of a deep neck space infection. During the procedure, silver nitrate was applied to halt the bleeding. Patient was subsequently transferred to another institution. Since the patient was not showing significant clinical improvement on antibiotic therapy, a computed tomography(CT) scan was performed demonstrating a hyperdense structure lodged in the pharyngeal mucosal space in the oropharynx and soft palate that was mistaken for a foreign body such as bone. Silver nitrate can have density similar to bone but does not have the normal architecture of bone with cortex and marrow on CT. Familiarity with the appearance of silver nitrate on CT, lack of bone architecture, and proper documentation and communication of the use of silver nitrate to the consultant radiologist and medical personnel could help avoid misdiagnosis and potentially unnecessary surgical exploration.展开更多
基金the National Key R&D Program of China(No.2022YFC2904103)the Key Program of the National Natural Science Foundation of China(No.52034001)+1 种基金the 111 Project(No.B20041)the China National Postdoctoral Program for Innovative Talents(No.BX20230041)。
文摘Traditional research believes that the filling body can effectively control stress concentration while ignoring the problems of unknown stability and the complex and changeable stress distribution of the filling body–surrounding rock combination under high-stress conditions.Current monitoring data processing methods cannot fully consider the complexity of monitoring objects,the diversity of monitoring methods,and the dynamics of monitoring data.To solve this problem,this paper proposes a phase space reconstruction and stability prediction method to process heterogeneous information of backfill–surrounding rock combinations.The three-dimensional monitoring system of a large-area filling body–surrounding rock combination in Longshou Mine was constructed by using drilling stress,multipoint displacement meter,and inclinometer.Varied information,such as the stress and displacement of the filling body–surrounding rock combination,was continuously obtained.Combined with the average mutual information method and the false nearest neighbor point method,the phase space of the heterogeneous information of the filling body–surrounding rock combination was then constructed.In this paper,the distance between the phase point and its nearest point was used as the index evaluation distance to evaluate the stability of the filling body–surrounding rock combination.The evaluated distances(ED)revealed a high sensitivity to the stability of the filling body–surrounding rock combination.The new method was then applied to calculate the time series of historically ED for 12 measuring points located at Longshou Mine.The moments of mutation in these time series were at least 3 months ahead of the roadway return dates.In the ED prediction experiments,the autoregressive integrated moving average model showed a higher prediction accuracy than the deep learning models(long short-term memory and Transformer).Furthermore,the root-mean-square error distribution of the prediction results peaked at 0.26,thus outperforming the no-prediction method in 70%of the cases.
文摘20th century physics experimentally established beyond doubt the fact that moving clocks read differently from “static” clocks. This fact is typically interpreted as support for special relativity. On the other hand, the same century produced proof that clocks at various locations in the gravitational field also read differently, and this fact is explained by general relativity, which is, in general, not Lorentz transformable. This paper establishes a common framework for the physics of clocks in these different situations.
文摘Recent research challenges in the wireless communication include the usage of diversity and efficient coding to improve data transmission quality and spectral efficiency. Space diversity uses multiple transmitting and/or receiving antennas to create independent fading channels without penalty in bandwidth efficiency. Space-time block coding is an encoding scheme for communication over Rayleigh fading channels using multiple transmitting antennas. Space-time block codes from complex orthogonal designs exist only for two transmitting antennas. This paper generalizes a new complex orthogonal space-time block code for four transmitting antennas, whose decoding complexity is very low. Simulations show that the generalized complex orthogonal space-time block code has low bit error rate, full rate and possibly large diversity.
文摘A covariant theory of gravitation in flat space-time is stated and compared with general relativity. The results of the theory of gravitation in flat space-time and of general relativity agree for weak gravitational fields to low approximations. For strong fields the results of the two theories deviate from one another. Flat space-time theory of gravitation gives under some natural assumptions non-singular cosmological models with a flat space. The universe contracts to a positive minimum and then it expands for all times. Shortly, after the minimum is reached, the cosmological models of two theories approximately agree with one another if models in general relativity with zero curvature are considered. A flat space is proved by experiments.
基金funded by the research project STiMulUs,ERC Grant agreement no.278267Financial support has also been provided by the Italian Ministry of Education,University and Research(MIUR)in the frame of the Departments of Excellence Initiative 2018-2022 attributed to DICAM of the University of Trento(Grant L.232/2016)the PRIN2017 project.The authors have also received funding from the University of Trento via the Strategic Initiative Modeling and Simulation.
文摘A new high-order accurate staggered semi-implicit space-time discontinuous Galerkin(DG)method is presented for the simulation of viscous incompressible flows on unstructured triangular grids in two space dimensions.The staggered DG scheme defines the discrete pressure on the primal triangular mesh,while the discrete velocity is defined on a staggered edge-based dual quadrilateral mesh.In this paper,a new pair of equal-order-interpolation velocity-pressure finite elements is proposed.On the primary triangular mesh(the pressure elements),the basis functions are piecewise polynomials of degree N and are allowed to jump on the boundaries of each triangle.On the dual mesh instead(the velocity elements),the basis functions consist in the union of piecewise polynomials of degree N on the two subtriangles that compose each quadrilateral and are allowed to jump only on the dual element boundaries,while they are continuous inside.In other words,the basis functions on the dual mesh arc built by continuous finite elements on the subtriangles.This choice allows the construction of an efficient,quadrature-free and memory saving algorithm.In our coupled space-time pressure correction formulation for the incompressible Navier-Stokes equations,the arbitrary high order of accuracy in time is achieved through tire use of time-dependent test and basis functions,in combination with simple and efficient Picard iterations.Several numerical tests on classical benchmarks confirm that the proposed method outperforms existing staggered semi-implicit space-time DG schemes,not only from a computer memory point of view,but also concerning the computational time.
文摘The 95.5 percent of discrepancy between theoretical prediction based on Einstein’s theory of relativity and the accurate cosmological measurement of WMAP and various supernova analyses is resolved classically using Newtonian mechanics in conjunction with a fractal Menger sponge space proposal. The new energy equation is thus based on the familiar kinetic energy of Newtonian mechanics scaled classically by a ratio relating our familiar three dimensional space homology to that of a Menger sponge. The remarkable final result is an energy equation identical to that of Einstein’s E=mc2 but divided by 22 so that our new equation reads as . Consequently the energy Lorentz-like reduction factor of percent is in astonishing agreement with cosmological measurements which put the hypothetical dark energy including dark matter at percent of the total theoretical value. In other words our analysis confirms the cosmological data putting the total value of measured ordinary matter and ordinary energy of the entire universe at 4.5 percent. Thus ordinary positive energy which can be measured using conventional methods is the energy of the quantum particle modeled by the Zero set in five dimensions. Dark energy on the other hand is the absolute value of the negative energy of the quantum Schrodinger wave modeled by the empty set also in five dimensions.
基金supported by National Natural Science Foundation of China (Grant No. 11971408)。
文摘In this paper, we design and analyze a space-time spectral method for the subdiffusion equation.Here, we are facing two difficulties. The first is that the solutions of this equation are usually singular near the initial time. Consequently, traditional high-order numerical methods in time are inefficient. The second obstacle is that the resulting system of the space-time spectral approach is usually large and time-consuming to solve. We aim at overcoming the first difficulty by proposing a novel approach in time, which is based on variable transformation techniques. Suitable ψ-fractional Sobolev spaces and a new variational framework are introduced to establish the well-posedness of the associated variational problem. This allows us to construct our space-time spectral method using a combination of temporal generalized Jacobi polynomials(GJPs) and spatial Legendre polynomials. For the second difficulty, we propose a fast algorithm to effectively solve the resulting linear system. The fast algorithm makes use of a matrix diagonalization in space and QZ decomposition in time. Our analysis and numerical experiments show that the proposed method is exponentially convergent with respect to the polynomial degrees in both space and time directions, even though the exact solution has very limited regularity.
基金This study was financially supported by the National Important Basic Research and Development Planning Program(No.1999043206)the National Natural Science Foundation of China(No.40234051)+1 种基金the Special Plan of Science and Technology of the Ministry of Land and Resources(20010103)the"Trans-century Training Program for Outstanding Talents”Fund sponsored by the.Ministry of Education.
文摘Based on the data of field measurement and drilling in the Tongling area, a series of numerical simulations are carried out by using the 'Surplus Space Method' (SSM), which is first put forward in this paper and applied to predict the shallow-seated magmatic bodies. The results of the numerical simulations show the existence and the 3-D shape of a conical magmatic structure at a depth of-1000 m beneath the center of the area: its top offsets southwards and bifurcates to several branches, while its lower part stretches northeastwards and contracts rapidly to a point at about -1000 m depth. This point is reckoned to be a 'sink' of magma system, transferring ore materials and heat energy from the deep magma chamber to the sub-surface apophyses. The preliminary application of the SSM proves that it may be developed as a new detection means for determining the existence of shallow-seated magmatic bodies and analyzing their three-dimensional features.
基金This research was supported by The People’s Republic of China Ministry of Science and Technology[2018YFF0213606-03(Mu Y.,Hu T.L.,Gong H.,Li S.J.and Sun Y.H.)http://www.most.gov.cn]the Science and Technology Department of Jilin Province[20160623016TC,20170204017NY,20170204038NY(Hu T.L.,Gong H.and Li S.J.)http://kjt.jl.gov.cn],and the ScienceTechnology Bureau of Changchun City[18DY021(Mu Y.,Hu T.L.,Gong H.,and Sun Y.H.)http://kjj.changchun.gov.cn].
文摘In large-scale deer farming image analysis,K-means or maximum between-class variance(Otsu)algorithms can be used to distinguish the deer from the background.However,in an actual breeding environment,the barbed wire or chain-link fencing has a certain isolating effect on the deer which greatly interferes with the identification of the individual deer.Also,when the target and background grey values are similar,the multiple background targets cannot be completely separated.To better identify the posture and behaviour of deer in a deer shed,we used digital image processing to separate the deer from the background.To address the problems mentioned above,this paper proposes an adaptive threshold segmentation algorithm based on color space.First,the original image is pre-processed and optimized.On this basis,the data are enhanced and contrasted.Next,color space is used to extract the several backgrounds through various color channels,then the adaptive space segmentation of the extracted part of the color space is performed.Based on the segmentation effect of the traditional Otsu algorithm,we designed a comparative experiment that divided the four postures of turning,getting up,lying,and standing,and successfully separated multiple target deer from the background.Experimental results show that compared with K-means,Otsu and hue saturation value(HSV)+K-means,this method is better in performance and accuracy for adaptive segmentation of deer in artificial breeding scenes and can be used to separate artificially cultivated deer from their backgrounds.Both the subjective and objective aspects achieved good segmentation results.This article lays a foundation for the effective identification of abnormal behaviour in sika deer.
文摘The dynamics, stability and control problem of a kind of infinite dimensional system are studied in the functional space with the method of modern Mathematics. First, the dynamical control model of the distributed parameter system with multi-body flexible and multi-topological structure was established which has damping, gyroscopic parts and constrained damping. Secondly, the necessary and sufficient condition of controllability and observability, the stability theory and asymptotic property of the system were obtained. These results expand the theory of the field about the dynamics and control of the system with multi-body flexible structure, and have important engineering significance.
文摘Silver nitrate is sometimes used as a means of chemicalcauterization for control of minor bleeding and management of hypergranulation tissue following bedside head and neck procedures. There are only few reports available on the imaging appearance of silver nitrate and its potential to mimic a foreign body. We report a case of a patient presenting with dysphagia, odynophagia, and fever following dental work who had a peritonsillar incision and drainage for treatment of a deep neck space infection. During the procedure, silver nitrate was applied to halt the bleeding. Patient was subsequently transferred to another institution. Since the patient was not showing significant clinical improvement on antibiotic therapy, a computed tomography(CT) scan was performed demonstrating a hyperdense structure lodged in the pharyngeal mucosal space in the oropharynx and soft palate that was mistaken for a foreign body such as bone. Silver nitrate can have density similar to bone but does not have the normal architecture of bone with cortex and marrow on CT. Familiarity with the appearance of silver nitrate on CT, lack of bone architecture, and proper documentation and communication of the use of silver nitrate to the consultant radiologist and medical personnel could help avoid misdiagnosis and potentially unnecessary surgical exploration.