Vertical layered space-time codes have demonstrated the enormous potential to accommodate rapid flow data. Thus far, vertical layered space-time codes assumed that perfect estimates of current channel fading condition...Vertical layered space-time codes have demonstrated the enormous potential to accommodate rapid flow data. Thus far, vertical layered space-time codes assumed that perfect estimates of current channel fading conditions are available at the receiver. However, increasing the number of transmit antennas increases the required training interval and reduces the available time in which data may be transmitted before the fading coefficients change. In this paper, a vertical layered space-time code is proposed. By applying the subspace method to the layered space-time code, the symbols can be detected without training symbols and channel estimates at the transmitter or the receiver. Monte Carlo simulations show that performance can approach that of the detection method with the knowledge of the channel.展开更多
A new improved group space-time block code (G-STBC) based on constellation rotation for four transmit antennas was proposed. In comparison with the traditional G-STBC coding scheme, the proposed space-time code has lo...A new improved group space-time block code (G-STBC) based on constellation rotation for four transmit antennas was proposed. In comparison with the traditional G-STBC coding scheme, the proposed space-time code has longer code length and adopts proper rotation-based symbols, which can increase the minimum distance of space-time codes and thereby improve code gain and achieve full diversity performance. The simulation results verify that the proposed group space-time code can achieve better bit error performance than both the traditional group space-time code and other quasi-orthogonal space-time codes. Compared with Ma’s full diversity full rate (FDFR) codes, the proposed space-time code also can achieve the same excellent error performance. Furthermore, the design of the new space-time code gives another new and simple method to construct space-time codes with full diversity and high rate in case that it is not easy to design the traditional FDFR space-time codes.展开更多
Multiple antenna wireless systems can provide larger channel capacity and enable spatial diversity to combat fading. In this paper we conduct an investigation into the design of coded space-time system obtained by ser...Multiple antenna wireless systems can provide larger channel capacity and enable spatial diversity to combat fading. In this paper we conduct an investigation into the design of coded space-time system obtained by serially concatenating channel code module and space-time code module with an interleaver in between. As an example, the system is constructed by employing low decoding complexity turbo-SPC (single parity check) code as outer module and linear complex field space-time code as inner module, which achieves full diversity and lossless equivalent channel capacity. Simulation results prove that our designed system performs well and it only loses 0.8 dB from multiple-input multiple-output (MIMO) capacity at BER = 10^-5 in the case of information bit length 6048. Compared with turbo code-based systems, it also has lower error floor.展开更多
To satisfy the request of wireless communication for new generation communication system, a new scheme consisting of a combination of adaptive technology and space-time code-OFDM is presented. The proposed method, exp...To satisfy the request of wireless communication for new generation communication system, a new scheme consisting of a combination of adaptive technology and space-time code-OFDM is presented. The proposed method, exploits adaptive bit allocation scheme over multipath fading channel. Numerical simulations have shown that the proposed scheme can greatly improve the performance of non-adaptive STBC-OFDM system.展开更多
An improved scheme with cooperative diversity based on distributed space-time block coding (WCD- DSTBC) is proposed, which effectively achieves diversity gains and improves the performance of the system by sharing s...An improved scheme with cooperative diversity based on distributed space-time block coding (WCD- DSTBC) is proposed, which effectively achieves diversity gains and improves the performance of the system by sharing some single-antenna users' antennas to form a virtual antenna array and combining with distributed spacetime block coding (DSTBC) mode. Then the relation between the system BER and the interuser BER for WCDDSTBC scheme is theoretically derived and the closed-form expression of BER for WCD-DSTBC system is obtained. The simulation results show that the proposed WCD-DSTBC scheme achieves distinct gains over the non-cooperative multi-carrier CDMA (MC-CDMA) system. When system BER is le-3 and interuser BER is le-3, about 2.5 dB gain can be gotten. When interuser channel state information (CSI) outgoes the users' individual CSI, about 3 dB gain is also achieved.展开更多
Recent research challenges in the wireless communication include the usage of diversity and efficient coding to improve data transmission quality and spectral efficiency. Space diversity uses multiple transmitting and...Recent research challenges in the wireless communication include the usage of diversity and efficient coding to improve data transmission quality and spectral efficiency. Space diversity uses multiple transmitting and/or receiving antennas to create independent fading channels without penalty in bandwidth efficiency. Space-time block coding is an encoding scheme for communication over Rayleigh fading channels using multiple transmitting antennas. Space-time block codes from complex orthogonal designs exist only for two transmitting antennas. This paper generalizes a new complex orthogonal space-time block code for four transmitting antennas, whose decoding complexity is very low. Simulations show that the generalized complex orthogonal space-time block code has low bit error rate, full rate and possibly large diversity.展开更多
Space-Time Block (STB) code has been an effective transmit diversity technique for combating fading due to its orthogonal design, simple decoding and high diversity gains. In this paper, a unit-rate complex orthogonal...Space-Time Block (STB) code has been an effective transmit diversity technique for combating fading due to its orthogonal design, simple decoding and high diversity gains. In this paper, a unit-rate complex orthogonal STB code for multiple antennas in Time Division Duplex (TDD) mode is proposed. Meanwhile, Turbo Coding (TC) is employed to improve the performance of proposed STB code further by utilizing its good ability to combat the burst error of fading channel. Compared with full-diversity multiple antennas STB codes, the proposed code can implement unit rate and partial diversity; and it has much smaller computational complexity under the same system throughput. Moreover, the application of TC can effectively make up for the performance loss due to partial diversity. Simulation results show that on the condition of same system throughput and concatenation of TC, the proposed code has lower Bit Error Rate (BER) than those full-diversity codes.展开更多
We generalized an constructing method of noncoherent unitary space time codes (N-USTC) over Rayleigh flat fading channels. A family of N-USTCs with T symbol peroids, M transmit and N receive antennas was constructed b...We generalized an constructing method of noncoherent unitary space time codes (N-USTC) over Rayleigh flat fading channels. A family of N-USTCs with T symbol peroids, M transmit and N receive antennas was constructed by the exponential mapping method based on the tangent subspace of the Grassmann manifold. This exponential mapping method can transform the coherent space time codes (C-STC) into the N-USTC on the Grassmann manifold. We infered an universal framework of constructing a C-STC that is designed by using the algebraic number theory and has full rate and full diversity (FRFD) for t symbol periods and same antennas, where M, N, T, t are general positive integer. We discussed the constraint condition that the exponential mapping has only one solution, from which we presented a approach of searching the optimum adjustive factor αopt that can generate an optimum noncoherent codeword. For different code parameters M, N, T, t and the optimum adjustive factor αopt, we gave the simulation results of the several N-USTCs.展开更多
Space-time trellis codes can achieve the best tradeoff among bandwidth efficiency, diversity gain, constellation size and trellis complexity. In this paper, some optimum low rate space-time trellis codes are proposed....Space-time trellis codes can achieve the best tradeoff among bandwidth efficiency, diversity gain, constellation size and trellis complexity. In this paper, some optimum low rate space-time trellis codes are proposed. Performance analysis and simulation show that the low rate space-time trellis codes outperform space-time block codes concatenated with convolutional code at the same bandwidth efficiency, and are more suitable for the power limited wireless communication system.展开更多
In this work, we observe the behavior of block space-time code in wireless channel dynamics. The block space-time code is optimally constructed in slow fading. The block code in quasistatic fading channels provides af...In this work, we observe the behavior of block space-time code in wireless channel dynamics. The block space-time code is optimally constructed in slow fading. The block code in quasistatic fading channels provides affordable complexity in design and construction. Our results show that the performance of the block space-time code may not be as good as conventionally convolutional coding with serial transmission for some channel features. As channel approaches fast fading, a coded single antenna scheme can collect as much diversity as desired by correctly choosing the free distance of code. The results also point to the need for robust space-time code in dynamic wireless fading channels. We expect that self-encoded spread spec-trum with block space-time code will provide a robust performance in dynamic wireless fading channels.展开更多
A method of space-time block coding (STBC) system based on adaptive beamforming of cyclostationarity signal algorithm is proposed.The method uses cyclostationarity of signals to achieve adaptive beamforming,then con...A method of space-time block coding (STBC) system based on adaptive beamforming of cyclostationarity signal algorithm is proposed.The method uses cyclostationarity of signals to achieve adaptive beamforming,then constructs a pair of low correlated transmit beams based on beamform estimation of multiple component signals of uplink.Using these two selected transmit beams,signals encoded by STBC are transmitted to achieve diversity gain and beamforming gain at the same time,and increase the signal to noise ratio (SNR) of downlink.With simple computation and fast convergence performance,the proposed scheme is applicable for time division multiple access (TDMA) wireless communication operated in a complex interference environment.Simulation results show that the proposed scheme has better performance than conventional STBC,and can obtain a gain of about 5 dB when the bit error ratio (BER) is 10-4.展开更多
Space-time coding is an important technique that can improve transmission performance at fading environments in mobile communication systems. In this paper, we propose a novel diversity scheme using spread spacetime b...Space-time coding is an important technique that can improve transmission performance at fading environments in mobile communication systems. In this paper, we propose a novel diversity scheme using spread spacetime block coding (SSTBC) in multiple antenna systems. At the transmitter, the primitive data are serial to parallel converted to multiple data streams, and each stream is rotated in constellation. Then Walsh codes are used to spread each symbol to all antenna space in a space-time block. The signals received from all receiver antennas are combined with the maximum ratio combining (MRC), equalized with linear equalizer to eliminate the inter-code interference and finally demodulated to recover to transmit data by using the one-symbol maximum likelihood detector. The proposed scheme does not sacrifice the spectrum efficiency meanwhile maintains the transceiver with low complexity. Owing to the transmission symbols of different transmit antennas passing through all the spatial subchannels between transceiver antenna pairs, the system obtains the partial additional space diversity gain of all spatial paths. It is also shown that the diversity gain is better than the previous space-time block coding (STBC) schemes with full transmission rate.展开更多
Based on the Complex Orthogonal Linear Dispersion (COLD) code,a novel linear Differ- ential Space-Time Modulation (DSTM) design is proposed in this paper.Compared with the existing nonlinear DSTM schemes based on grou...Based on the Complex Orthogonal Linear Dispersion (COLD) code,a novel linear Differ- ential Space-Time Modulation (DSTM) design is proposed in this paper.Compared with the existing nonlinear DSTM schemes based on group codes,the proposed linear DSTM scheme is easier to design, enjoys full diversity and allows for a simplified differential receiver,which can detect the transmitted symbols separately.Furthermore,compared with the existing linear DSTM based on orthogonal design, our new construction can be applied to any number of transmit antennas.Similar to other algorithms, the proposed scheme also can be demodulated with or without channel estimates at the receiver,but the performance degrades approximately by 3dB when estimates are not available.展开更多
Previously proposed differential modulation schemes for time-varying channels may not achieve the full transmit diversity and the maximum Doppler diversity simultaneously. Based on an existing basis expansion model, a...Previously proposed differential modulation schemes for time-varying channels may not achieve the full transmit diversity and the maximum Doppler diversity simultaneously. Based on an existing basis expansion model, a new differential space-time code, which wisely combines interleaver/de-interleaver with traditonal space-time transmitting technique to overcome such limitation, .is presented. Two noncoherent differential decoders, named decision-feedback differential detector (DF-DD) and Viterbi-algorithmbased multiple-symbol-detection differential detector ( MSD-DD), are also derived. We show that our design may recover data symbols with full antenna diversity and the maximum Doppler diversity at high signal-to-noise ratio. System performance is evaluated with simulations.展开更多
In this paper, we introduce an efficient space-time coding scheme for time dispersive Multiple-Input Multiple-Output (MIMO) channels. Channel layering and Orthogonal Frequency Division Multiplexing (OFDM) technique ar...In this paper, we introduce an efficient space-time coding scheme for time dispersive Multiple-Input Multiple-Output (MIMO) channels. Channel layering and Orthogonal Frequency Division Multiplexing (OFDM) technique are used in the proposed scheme. The proposed scheme is based on maximizing the distance between any two codewords. This is done by inserting an optimized phase shifts between the symbols in the same layer and between different layers. This way leads to the increase of the achieved diversity and coding gains. As a result, the performance of the system will be improved. Simulation results show the efficiency of the proposed scheme compared to the conventional schemes.展开更多
In this paper, Beam Pattern Scanning (BPS), a transmit diversity technique, is compared with two well known transmit diversity techniques, space-time block coding (STBC) and space-time trellis coding (STTC). In BPS (a...In this paper, Beam Pattern Scanning (BPS), a transmit diversity technique, is compared with two well known transmit diversity techniques, space-time block coding (STBC) and space-time trellis coding (STTC). In BPS (also called beam pattern oscillation), controlled time varying weight vectors are applied to the antenna array elements mounted at the base station (BS). This creates a small movement in the antenna array pattern directed toward the desired user. In rich scattering environments, this small beam pattern movement creates an artificial fast fading channel. The receiver is designed to exploit time diversity benefits of the fast fading channel. Via the application of simple combining techniques, BPS improves the probability-of-error performance and network capacity with minimal cost and complexity. In this work, to highlight the potential of the BPS, we compare BPS and Space-Time Coding (i.e., STBC and STTC) schemes. The comparisons are in terms of their complexity, system physical dimension, network capacity, probability-of-error performance, and spectrum efficiency. It is shown that BPS leads to higher network capacity and performance with a smaller antenna dimension and complexity with minimal loss in spectrum efficiency. This identifies BPS as a promising scheme for future wireless communications with smart antennas.展开更多
The conventional orthogonal space-time block code (OSTBC) with limited feedback has fixed p-1?feedback bits for the specific ntp?transmit antennas. A new partial feedback based OSTBC which provides flexible feedback b...The conventional orthogonal space-time block code (OSTBC) with limited feedback has fixed p-1?feedback bits for the specific ntp?transmit antennas. A new partial feedback based OSTBC which provides flexible feedback bits is proposed in this paper. The proposed scheme inherits the properties of having a simple decoder and the full diversity of OSTBC, moreover, preserves full data rate. Simulation results show that for?ntp transmit antennas, the proposed scheme has the similar performance with the conventional one by using p-1?feedback bits, whereas has the better performance with more feedback bits.展开更多
Many common multimedia signal processing, including cropping, filtering, and perceptual coding, make watermark signal fading-like modification. A scheme that applies transmit diversity technique to improve robustness ...Many common multimedia signal processing, including cropping, filtering, and perceptual coding, make watermark signal fading-like modification. A scheme that applies transmit diversity technique to improve robustness of digital watermarking is presented. First, the scheme decomposes the original image using wavelet pyramid algorithm and chooses the middle-frequency band for transmission channel that the watermark will be embedded into. Then the watermark is pseudo-randomly permuted. The scheme makes use of space-time coding and differential detection technique to embed and extract watermark. The extracting process has access to neither the original image nor channel state information. Experimental results demonstrate that the scheme improves the performance of robust watermarking.展开更多
A non-unitary non-coherent space-time code which is capable of achieving full algebraic diversity is proposed based on full diversity space-time block coding, The error performance is optimized by transforming the non...A non-unitary non-coherent space-time code which is capable of achieving full algebraic diversity is proposed based on full diversity space-time block coding, The error performance is optimized by transforming the non-unitary space-time code into unitary space-time code, By exploiting the desired structure of the proposed code, a grouped generalized likelihood ratio test decoding algorithm is presented to overcome the high complexity of the optimal algorithm, Simulation results show that the proposed code possesses high spectrum efficiency in contrast to the unitary space-time code despite slight loss in the SNR, and besides, the proposed grouped decoding algorithm provides good tradeoff between performance and complexity,展开更多
The problem of constructing unitary space-time codes with high diversity product has been studied in many prior works.Recently,constructions of parametric fully diverse unitary space-time codes for prime number antenn...The problem of constructing unitary space-time codes with high diversity product has been studied in many prior works.Recently,constructions of parametric fully diverse unitary space-time codes for prime number antennas system have been introduced.In this paper,the authors propose new construction methods based on these constructions.And fully diverse codes of any number antennas are obtained from these constructions.Unitary space-time codes from present constructions are found to have better error performance than many best known ones.展开更多
基金Partially supported by the National Natural Sciences Foundation (No.69872029) and the Research Fund for Doctoral Program of Higher Education (No.1999069808) of China
文摘Vertical layered space-time codes have demonstrated the enormous potential to accommodate rapid flow data. Thus far, vertical layered space-time codes assumed that perfect estimates of current channel fading conditions are available at the receiver. However, increasing the number of transmit antennas increases the required training interval and reduces the available time in which data may be transmitted before the fading coefficients change. In this paper, a vertical layered space-time code is proposed. By applying the subspace method to the layered space-time code, the symbols can be detected without training symbols and channel estimates at the transmitter or the receiver. Monte Carlo simulations show that performance can approach that of the detection method with the knowledge of the channel.
基金National High Technology Research andDevelopment Program (863) of China( No. 003AA12331007 ) and NationalNatural Science Foundation of China(No. 60272079, 60332030)
文摘A new improved group space-time block code (G-STBC) based on constellation rotation for four transmit antennas was proposed. In comparison with the traditional G-STBC coding scheme, the proposed space-time code has longer code length and adopts proper rotation-based symbols, which can increase the minimum distance of space-time codes and thereby improve code gain and achieve full diversity performance. The simulation results verify that the proposed group space-time code can achieve better bit error performance than both the traditional group space-time code and other quasi-orthogonal space-time codes. Compared with Ma’s full diversity full rate (FDFR) codes, the proposed space-time code also can achieve the same excellent error performance. Furthermore, the design of the new space-time code gives another new and simple method to construct space-time codes with full diversity and high rate in case that it is not easy to design the traditional FDFR space-time codes.
基金supported by the National Natural Science Foundation of China (Grant Nos.60332030, 60572157), and the National High-TechnologY Research and Development of China (Grant No.863-2003AA123310)
文摘Multiple antenna wireless systems can provide larger channel capacity and enable spatial diversity to combat fading. In this paper we conduct an investigation into the design of coded space-time system obtained by serially concatenating channel code module and space-time code module with an interleaver in between. As an example, the system is constructed by employing low decoding complexity turbo-SPC (single parity check) code as outer module and linear complex field space-time code as inner module, which achieves full diversity and lossless equivalent channel capacity. Simulation results prove that our designed system performs well and it only loses 0.8 dB from multiple-input multiple-output (MIMO) capacity at BER = 10^-5 in the case of information bit length 6048. Compared with turbo code-based systems, it also has lower error floor.
文摘To satisfy the request of wireless communication for new generation communication system, a new scheme consisting of a combination of adaptive technology and space-time code-OFDM is presented. The proposed method, exploits adaptive bit allocation scheme over multipath fading channel. Numerical simulations have shown that the proposed scheme can greatly improve the performance of non-adaptive STBC-OFDM system.
基金supported by the State Key Laboratory for Mobile Communication Open Foundation(N200502)the Natural Science Foundation of Jiangsu Province(BK2007192).
文摘An improved scheme with cooperative diversity based on distributed space-time block coding (WCD- DSTBC) is proposed, which effectively achieves diversity gains and improves the performance of the system by sharing some single-antenna users' antennas to form a virtual antenna array and combining with distributed spacetime block coding (DSTBC) mode. Then the relation between the system BER and the interuser BER for WCDDSTBC scheme is theoretically derived and the closed-form expression of BER for WCD-DSTBC system is obtained. The simulation results show that the proposed WCD-DSTBC scheme achieves distinct gains over the non-cooperative multi-carrier CDMA (MC-CDMA) system. When system BER is le-3 and interuser BER is le-3, about 2.5 dB gain can be gotten. When interuser channel state information (CSI) outgoes the users' individual CSI, about 3 dB gain is also achieved.
文摘Recent research challenges in the wireless communication include the usage of diversity and efficient coding to improve data transmission quality and spectral efficiency. Space diversity uses multiple transmitting and/or receiving antennas to create independent fading channels without penalty in bandwidth efficiency. Space-time block coding is an encoding scheme for communication over Rayleigh fading channels using multiple transmitting antennas. Space-time block codes from complex orthogonal designs exist only for two transmitting antennas. This paper generalizes a new complex orthogonal space-time block code for four transmitting antennas, whose decoding complexity is very low. Simulations show that the generalized complex orthogonal space-time block code has low bit error rate, full rate and possibly large diversity.
基金Supported by Chinese 863 project (No.2001 AA 123042).
文摘Space-Time Block (STB) code has been an effective transmit diversity technique for combating fading due to its orthogonal design, simple decoding and high diversity gains. In this paper, a unit-rate complex orthogonal STB code for multiple antennas in Time Division Duplex (TDD) mode is proposed. Meanwhile, Turbo Coding (TC) is employed to improve the performance of proposed STB code further by utilizing its good ability to combat the burst error of fading channel. Compared with full-diversity multiple antennas STB codes, the proposed code can implement unit rate and partial diversity; and it has much smaller computational complexity under the same system throughput. Moreover, the application of TC can effectively make up for the performance loss due to partial diversity. Simulation results show that on the condition of same system throughput and concatenation of TC, the proposed code has lower Bit Error Rate (BER) than those full-diversity codes.
文摘We generalized an constructing method of noncoherent unitary space time codes (N-USTC) over Rayleigh flat fading channels. A family of N-USTCs with T symbol peroids, M transmit and N receive antennas was constructed by the exponential mapping method based on the tangent subspace of the Grassmann manifold. This exponential mapping method can transform the coherent space time codes (C-STC) into the N-USTC on the Grassmann manifold. We infered an universal framework of constructing a C-STC that is designed by using the algebraic number theory and has full rate and full diversity (FRFD) for t symbol periods and same antennas, where M, N, T, t are general positive integer. We discussed the constraint condition that the exponential mapping has only one solution, from which we presented a approach of searching the optimum adjustive factor αopt that can generate an optimum noncoherent codeword. For different code parameters M, N, T, t and the optimum adjustive factor αopt, we gave the simulation results of the several N-USTCs.
文摘Space-time trellis codes can achieve the best tradeoff among bandwidth efficiency, diversity gain, constellation size and trellis complexity. In this paper, some optimum low rate space-time trellis codes are proposed. Performance analysis and simulation show that the low rate space-time trellis codes outperform space-time block codes concatenated with convolutional code at the same bandwidth efficiency, and are more suitable for the power limited wireless communication system.
文摘In this work, we observe the behavior of block space-time code in wireless channel dynamics. The block space-time code is optimally constructed in slow fading. The block code in quasistatic fading channels provides affordable complexity in design and construction. Our results show that the performance of the block space-time code may not be as good as conventionally convolutional coding with serial transmission for some channel features. As channel approaches fast fading, a coded single antenna scheme can collect as much diversity as desired by correctly choosing the free distance of code. The results also point to the need for robust space-time code in dynamic wireless fading channels. We expect that self-encoded spread spec-trum with block space-time code will provide a robust performance in dynamic wireless fading channels.
文摘A method of space-time block coding (STBC) system based on adaptive beamforming of cyclostationarity signal algorithm is proposed.The method uses cyclostationarity of signals to achieve adaptive beamforming,then constructs a pair of low correlated transmit beams based on beamform estimation of multiple component signals of uplink.Using these two selected transmit beams,signals encoded by STBC are transmitted to achieve diversity gain and beamforming gain at the same time,and increase the signal to noise ratio (SNR) of downlink.With simple computation and fast convergence performance,the proposed scheme is applicable for time division multiple access (TDMA) wireless communication operated in a complex interference environment.Simulation results show that the proposed scheme has better performance than conventional STBC,and can obtain a gain of about 5 dB when the bit error ratio (BER) is 10-4.
基金This project was supported by the National Science Foundation of China (60496314)
文摘Space-time coding is an important technique that can improve transmission performance at fading environments in mobile communication systems. In this paper, we propose a novel diversity scheme using spread spacetime block coding (SSTBC) in multiple antenna systems. At the transmitter, the primitive data are serial to parallel converted to multiple data streams, and each stream is rotated in constellation. Then Walsh codes are used to spread each symbol to all antenna space in a space-time block. The signals received from all receiver antennas are combined with the maximum ratio combining (MRC), equalized with linear equalizer to eliminate the inter-code interference and finally demodulated to recover to transmit data by using the one-symbol maximum likelihood detector. The proposed scheme does not sacrifice the spectrum efficiency meanwhile maintains the transceiver with low complexity. Owing to the transmission symbols of different transmit antennas passing through all the spatial subchannels between transceiver antenna pairs, the system obtains the partial additional space diversity gain of all spatial paths. It is also shown that the diversity gain is better than the previous space-time block coding (STBC) schemes with full transmission rate.
基金Supported by the National Natural Science Foundation of China (No.60372055)National High Technology Research and Development Project of China (No.2003AA123320)the National Doctoral Foundation of China (No.20020698024,No.20030698027).
文摘Based on the Complex Orthogonal Linear Dispersion (COLD) code,a novel linear Differ- ential Space-Time Modulation (DSTM) design is proposed in this paper.Compared with the existing nonlinear DSTM schemes based on group codes,the proposed linear DSTM scheme is easier to design, enjoys full diversity and allows for a simplified differential receiver,which can detect the transmitted symbols separately.Furthermore,compared with the existing linear DSTM based on orthogonal design, our new construction can be applied to any number of transmit antennas.Similar to other algorithms, the proposed scheme also can be demodulated with or without channel estimates at the receiver,but the performance degrades approximately by 3dB when estimates are not available.
基金Supported bv the National Nature Science Foundation of China ( No. 603905405 ). and the National High Teehnology Research & Development Program of China (No. 2003AA12331005).
文摘Previously proposed differential modulation schemes for time-varying channels may not achieve the full transmit diversity and the maximum Doppler diversity simultaneously. Based on an existing basis expansion model, a new differential space-time code, which wisely combines interleaver/de-interleaver with traditonal space-time transmitting technique to overcome such limitation, .is presented. Two noncoherent differential decoders, named decision-feedback differential detector (DF-DD) and Viterbi-algorithmbased multiple-symbol-detection differential detector ( MSD-DD), are also derived. We show that our design may recover data symbols with full antenna diversity and the maximum Doppler diversity at high signal-to-noise ratio. System performance is evaluated with simulations.
文摘In this paper, we introduce an efficient space-time coding scheme for time dispersive Multiple-Input Multiple-Output (MIMO) channels. Channel layering and Orthogonal Frequency Division Multiplexing (OFDM) technique are used in the proposed scheme. The proposed scheme is based on maximizing the distance between any two codewords. This is done by inserting an optimized phase shifts between the symbols in the same layer and between different layers. This way leads to the increase of the achieved diversity and coding gains. As a result, the performance of the system will be improved. Simulation results show the efficiency of the proposed scheme compared to the conventional schemes.
文摘In this paper, Beam Pattern Scanning (BPS), a transmit diversity technique, is compared with two well known transmit diversity techniques, space-time block coding (STBC) and space-time trellis coding (STTC). In BPS (also called beam pattern oscillation), controlled time varying weight vectors are applied to the antenna array elements mounted at the base station (BS). This creates a small movement in the antenna array pattern directed toward the desired user. In rich scattering environments, this small beam pattern movement creates an artificial fast fading channel. The receiver is designed to exploit time diversity benefits of the fast fading channel. Via the application of simple combining techniques, BPS improves the probability-of-error performance and network capacity with minimal cost and complexity. In this work, to highlight the potential of the BPS, we compare BPS and Space-Time Coding (i.e., STBC and STTC) schemes. The comparisons are in terms of their complexity, system physical dimension, network capacity, probability-of-error performance, and spectrum efficiency. It is shown that BPS leads to higher network capacity and performance with a smaller antenna dimension and complexity with minimal loss in spectrum efficiency. This identifies BPS as a promising scheme for future wireless communications with smart antennas.
文摘The conventional orthogonal space-time block code (OSTBC) with limited feedback has fixed p-1?feedback bits for the specific ntp?transmit antennas. A new partial feedback based OSTBC which provides flexible feedback bits is proposed in this paper. The proposed scheme inherits the properties of having a simple decoder and the full diversity of OSTBC, moreover, preserves full data rate. Simulation results show that for?ntp transmit antennas, the proposed scheme has the similar performance with the conventional one by using p-1?feedback bits, whereas has the better performance with more feedback bits.
基金This project was supported by the National Natural Science Foundation of China(60072041).
文摘Many common multimedia signal processing, including cropping, filtering, and perceptual coding, make watermark signal fading-like modification. A scheme that applies transmit diversity technique to improve robustness of digital watermarking is presented. First, the scheme decomposes the original image using wavelet pyramid algorithm and chooses the middle-frequency band for transmission channel that the watermark will be embedded into. Then the watermark is pseudo-randomly permuted. The scheme makes use of space-time coding and differential detection technique to embed and extract watermark. The extracting process has access to neither the original image nor channel state information. Experimental results demonstrate that the scheme improves the performance of robust watermarking.
基金Supported by the National Natural Science Foundation of China (Grant No. 60372055)the National Doctoral Foundation of China (Grant No. 20030698027)
文摘A non-unitary non-coherent space-time code which is capable of achieving full algebraic diversity is proposed based on full diversity space-time block coding, The error performance is optimized by transforming the non-unitary space-time code into unitary space-time code, By exploiting the desired structure of the proposed code, a grouped generalized likelihood ratio test decoding algorithm is presented to overcome the high complexity of the optimal algorithm, Simulation results show that the proposed code possesses high spectrum efficiency in contrast to the unitary space-time code despite slight loss in the SNR, and besides, the proposed grouped decoding algorithm provides good tradeoff between performance and complexity,
文摘The problem of constructing unitary space-time codes with high diversity product has been studied in many prior works.Recently,constructions of parametric fully diverse unitary space-time codes for prime number antennas system have been introduced.In this paper,the authors propose new construction methods based on these constructions.And fully diverse codes of any number antennas are obtained from these constructions.Unitary space-time codes from present constructions are found to have better error performance than many best known ones.