Space-Time Block Coded(STBC)Orthogonal Frequency Division Multiplexing(OFDM)satisfies higher data-rate requirements while maintaining signal quality in a multipath fading channel.However,conventional STBCs,including O...Space-Time Block Coded(STBC)Orthogonal Frequency Division Multiplexing(OFDM)satisfies higher data-rate requirements while maintaining signal quality in a multipath fading channel.However,conventional STBCs,including Orthogonal STBCs(OSTBCs),Non-Orthogonal(NOSTBCs),and Quasi-Orthogonal STBCs(QOSTBCs),do not provide both maximal diversity order and unity code rate simultaneously for more than two transmit antennas.This paper targets this problem and applies Maximum Rank Distance(MRD)codes in designing STBCOFDM systems.By following the direct-matrix construction method,we can construct binary extended finite field MRD-STBCs for any number of transmitting antennas.Work uses MRD-STBCs built over Phase-Shift Keying(PSK)modulation to develop an MRD-based STBC-OFDM system.The MRD-based STBC-OFDM system sacrifices minor error performance compared to traditional OSTBC-OFDM but shows improved results against NOSTBC and QOSTBC-OFDM.It also provides 25%higher data-rates than OSTBC-OFDM in configurations that use more than two transmit antennas.The tradeoffs are minor increases in computational complexity and processing delays.展开更多
There is a relation between space and time, which is called space-time continuum. With the help of some mathematical equations, we can establish an alternative relation between space-time and mass, treating mass as a ...There is a relation between space and time, which is called space-time continuum. With the help of some mathematical equations, we can establish an alternative relation between space-time and mass, treating mass as a fifth dimension. There is the concept about mass being a property of any inertial or gravitational object in space. Mass can create distortion in space. As a result of that, space-time curvature will be bent towards the massive object.展开更多
In this paper,an optimal guidance law for missiles with impact angle and miss distance constraints is proposed to achieve the maximal terminal velocity. The normal acceleration command that includes the timevarying co...In this paper,an optimal guidance law for missiles with impact angle and miss distance constraints is proposed to achieve the maximal terminal velocity. The normal acceleration command that includes the timevarying coefficients is introduced to satisfy the desired impact angle as well as zero miss distance according to the geometric relation and relative motion parameters between missile and target. The problem is formulated as an optimal control problem by defining the angle of velocity error and flight-path angle as state variables and maximizing a performance index of the terminal velocity. The analytical form of the proposed guidance law is obtained as the solution of the optimal control problem combining optimal control theory and numerical value computation method. Nonlinear simulations of various situations demonstrate the performance and feasibility of the proposed optimal guidance law.展开更多
在用户数量激增的应急通信场景下,为保证地面用户的通信质量,提出了基于距离约束的用户自适应接入方案。首先采用泊松点距离约束策略(Poisson Point under Distance Constraint,PPDC)对无人机(Unmanned Aerial Vehicle,UAV)的位置进行建...在用户数量激增的应急通信场景下,为保证地面用户的通信质量,提出了基于距离约束的用户自适应接入方案。首先采用泊松点距离约束策略(Poisson Point under Distance Constraint,PPDC)对无人机(Unmanned Aerial Vehicle,UAV)的位置进行建模,避免无人机区域重叠带来的干扰问题。其次,引入基站负载传输协议(Base Station Load Transfer Protocol,BSLTP),当接入基站的用户数量超过给定阈值时,超载用户由无人机提供服务。此外,分别分析了地面基站和无人机的覆盖性能,得到了系统整体覆盖概率,并研究了无人机高度、覆盖半径、激增用户密度对网络覆盖性能的影响。最后,通过仿真验证了理论结果的正确性,且所提部署方案能够有效提升网络覆盖性能。展开更多
Crude oil scheduling optimization is an effective method to enhance the economic benefits of oil refining.But uncertainties,including uncertain demands of crude distillation units(CDUs),might make the production plans...Crude oil scheduling optimization is an effective method to enhance the economic benefits of oil refining.But uncertainties,including uncertain demands of crude distillation units(CDUs),might make the production plans made by the traditional deterministic optimization models infeasible.A data-driven Wasserstein distributionally robust chance-constrained(WDRCC)optimization approach is proposed in this paper to deal with demand uncertainty in crude oil scheduling.First,a new deterministic crude oil scheduling optimization model is developed as the basis of this approach.The Wasserstein distance is then used to build ambiguity sets from historical data to describe the possible realizations of probability distributions of uncertain demands.A cross-validation method is advanced to choose suitable radii for these ambiguity sets.The deterministic model is reformulated as a WDRCC optimization model for crude oil scheduling to guarantee the demand constraints hold with a desired high probability even in the worst situation in ambiguity sets.The proposed WDRCC model is transferred into an equivalent conditional value-at-risk representation and further derived as a mixed-integer nonlinear programming counterpart.Industrial case studies from a real-world refinery are conducted to show the effectiveness of the proposed method.Out-of-sample tests demonstrate that the solution of the WDRCC model is more robust than those of the deterministic model and the chance-constrained model.展开更多
基金supported by the Excellent Foreign Student scholarship program,Sirindhorn International Institute of Technology.
文摘Space-Time Block Coded(STBC)Orthogonal Frequency Division Multiplexing(OFDM)satisfies higher data-rate requirements while maintaining signal quality in a multipath fading channel.However,conventional STBCs,including Orthogonal STBCs(OSTBCs),Non-Orthogonal(NOSTBCs),and Quasi-Orthogonal STBCs(QOSTBCs),do not provide both maximal diversity order and unity code rate simultaneously for more than two transmit antennas.This paper targets this problem and applies Maximum Rank Distance(MRD)codes in designing STBCOFDM systems.By following the direct-matrix construction method,we can construct binary extended finite field MRD-STBCs for any number of transmitting antennas.Work uses MRD-STBCs built over Phase-Shift Keying(PSK)modulation to develop an MRD-based STBC-OFDM system.The MRD-based STBC-OFDM system sacrifices minor error performance compared to traditional OSTBC-OFDM but shows improved results against NOSTBC and QOSTBC-OFDM.It also provides 25%higher data-rates than OSTBC-OFDM in configurations that use more than two transmit antennas.The tradeoffs are minor increases in computational complexity and processing delays.
文摘There is a relation between space and time, which is called space-time continuum. With the help of some mathematical equations, we can establish an alternative relation between space-time and mass, treating mass as a fifth dimension. There is the concept about mass being a property of any inertial or gravitational object in space. Mass can create distortion in space. As a result of that, space-time curvature will be bent towards the massive object.
基金Sponsored by the National Security Academic Foundation(Grant No.11176012)the CALT University Joint innovation Foundation(Grant No.CALT 201302)
文摘In this paper,an optimal guidance law for missiles with impact angle and miss distance constraints is proposed to achieve the maximal terminal velocity. The normal acceleration command that includes the timevarying coefficients is introduced to satisfy the desired impact angle as well as zero miss distance according to the geometric relation and relative motion parameters between missile and target. The problem is formulated as an optimal control problem by defining the angle of velocity error and flight-path angle as state variables and maximizing a performance index of the terminal velocity. The analytical form of the proposed guidance law is obtained as the solution of the optimal control problem combining optimal control theory and numerical value computation method. Nonlinear simulations of various situations demonstrate the performance and feasibility of the proposed optimal guidance law.
文摘在用户数量激增的应急通信场景下,为保证地面用户的通信质量,提出了基于距离约束的用户自适应接入方案。首先采用泊松点距离约束策略(Poisson Point under Distance Constraint,PPDC)对无人机(Unmanned Aerial Vehicle,UAV)的位置进行建模,避免无人机区域重叠带来的干扰问题。其次,引入基站负载传输协议(Base Station Load Transfer Protocol,BSLTP),当接入基站的用户数量超过给定阈值时,超载用户由无人机提供服务。此外,分别分析了地面基站和无人机的覆盖性能,得到了系统整体覆盖概率,并研究了无人机高度、覆盖半径、激增用户密度对网络覆盖性能的影响。最后,通过仿真验证了理论结果的正确性,且所提部署方案能够有效提升网络覆盖性能。
基金the supports from National Natural Science Foundation of China(61988101,62073142,22178103)National Natural Science Fund for Distinguished Young Scholars(61925305)International(Regional)Cooperation and Exchange Project(61720106008)。
文摘Crude oil scheduling optimization is an effective method to enhance the economic benefits of oil refining.But uncertainties,including uncertain demands of crude distillation units(CDUs),might make the production plans made by the traditional deterministic optimization models infeasible.A data-driven Wasserstein distributionally robust chance-constrained(WDRCC)optimization approach is proposed in this paper to deal with demand uncertainty in crude oil scheduling.First,a new deterministic crude oil scheduling optimization model is developed as the basis of this approach.The Wasserstein distance is then used to build ambiguity sets from historical data to describe the possible realizations of probability distributions of uncertain demands.A cross-validation method is advanced to choose suitable radii for these ambiguity sets.The deterministic model is reformulated as a WDRCC optimization model for crude oil scheduling to guarantee the demand constraints hold with a desired high probability even in the worst situation in ambiguity sets.The proposed WDRCC model is transferred into an equivalent conditional value-at-risk representation and further derived as a mixed-integer nonlinear programming counterpart.Industrial case studies from a real-world refinery are conducted to show the effectiveness of the proposed method.Out-of-sample tests demonstrate that the solution of the WDRCC model is more robust than those of the deterministic model and the chance-constrained model.