Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since...Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since the amount of available information channels is limited.Herein,we propose and demonstrate an optical secret sharing framework based on the multi-dimensional multiplexing liquid crystal(LC)holograms.The LC holograms are used as spatially separated shares to carry secret images.The polarization of the incident light and the distance between different shares are served as secret keys,which can significantly improve the information security and capacity.Besides,the decryption condition is also restricted by the applied external voltage due to the variant diffraction efficiency,which further increases the information security.In implementation,an artificial neural network(ANN)model is developed to carefully design the phase distribution of each LC hologram.With the advantage of high security,high capacity and simple configuration,our optical secret sharing framework has great potentials in optical encryption and dynamic holographic display.展开更多
In this paper,we mainly discuss a discrete estimation of the average differential entropy for a continuous time-stationary ergodic space-time random field.By estimating the probability value of a time-stationary rando...In this paper,we mainly discuss a discrete estimation of the average differential entropy for a continuous time-stationary ergodic space-time random field.By estimating the probability value of a time-stationary random field in a small range,we give an entropy estimation and obtain the average entropy estimation formula in a certain bounded space region.It can be proven that the estimation of the average differential entropy converges to the theoretical value with a probability of 1.In addition,we also conducted numerical experiments for different parameters to verify the convergence result obtained in the theoretical proofs.展开更多
Underwater monopulse space-time adaptive track-before-detect method,which combines space-time adaptive detector(STAD)and the track-before-detect algorithm based on dynamic programming(DP-TBD),denoted as STAD-DP-TBD,ca...Underwater monopulse space-time adaptive track-before-detect method,which combines space-time adaptive detector(STAD)and the track-before-detect algorithm based on dynamic programming(DP-TBD),denoted as STAD-DP-TBD,can effectively detect low-speed weak targets.However,due to the complexity and variability of the underwater environment,it is difficult to obtain sufficient secondary data,resulting in a serious decline in the detection and tracking performance,and leading to poor robustness of the algorithm.In this paper,based on the adaptive matched filter(AMF)test and the RAO test,underwater monopulse AMF-DP-TBD algorithm and RAO-DP-TBD algorithm which incorporate persymmetry and symmetric spectrum,denoted as PSAMF-DP-TBD and PS-RAO-DP-TBD,are proposed and compared with the AMF-DP-TBD algorithm and RAO-DP-TBD algorithm based on persymmetry array,denoted as P-AMF-DP-TBD and P-RAO-DP-TBD.The simulation results show that the four methods can work normally with sufficient secondary data and slightly insufficient secondary data,but when the secondary data is severely insufficient,the P-AMF-DP-TBD and P-RAO-DP-TBD algorithms has failed while the PSAMF-DP-TBD and PS-RAO-DP-TBD algorithms still have good detection and tracking capabilities.展开更多
This paper presents a physically plausible and somewhat illuminating first step in extending the fundamental principles of mechanical stress and strain to space-time. Here the geometry of space-time, encoded in the me...This paper presents a physically plausible and somewhat illuminating first step in extending the fundamental principles of mechanical stress and strain to space-time. Here the geometry of space-time, encoded in the metric tensor, is considered to be made up of a dynamic lattice of extremely small, localized fields that form a perfectly elastic Lorentz symmetric space-time at the global (macroscopic) scale. This theoretical model of space-time at the Planck scale leads to a somewhat surprising result in which matter waves in curved space-time radiate thermal gravitational energy, as well as an equally intriguing relationship for the anomalous dispersion of light in a gravitational field.展开更多
The emerging virtual coupling technology aims to operate multiple train units in a Virtually Coupled Train Set(VCTS)at a minimal but safe distance.To guarantee collision avoidance,the safety distance should be calcula...The emerging virtual coupling technology aims to operate multiple train units in a Virtually Coupled Train Set(VCTS)at a minimal but safe distance.To guarantee collision avoidance,the safety distance should be calculated using the state-of-the-art space-time separation principle that separates the Emergency Braking(EB)trajectories of two successive units during the whole EB process.In this case,the minimal safety distance is usually numerically calculated without an analytic formulation.Thus,the constrained VCTS control problem is hard to address with space-time separation,which is still a gap in the existing literature.To solve this problem,we propose a Distributed Economic Model Predictive Control(DEMPC)approach with computation efficiency and theoretical guarantee.Specifically,to alleviate the computation burden,we transform implicit safety constraints into explicitly linear ones,such that the optimal control problem in DEMPC is a quadratic programming problem that can be solved efficiently.For theoretical analysis,sufficient conditions are derived to guarantee the recursive feasibility and stability of DEMPC,employing compatibility constraints,tube techniques and terminal ingredient tuning.Moreover,we extend our approach with globally optimal and distributed online EB configuration methods to shorten the minimal distance among VCTS.Finally,experimental results demonstrate the performance and advantages of the proposed approaches.展开更多
Flat optical elements have attracted enormous attentions and act as promising candidates for the next generation of optical components.As one of the most outstanding representatives,liquid crystal(LC)has been widely a...Flat optical elements have attracted enormous attentions and act as promising candidates for the next generation of optical components.As one of the most outstanding representatives,liquid crystal(LC)has been widely applied in flat panel display industries and inspires the wavefront modulation with the development of LC alignment techniques.However,most LC elements perform only one type of optical manipulation and are difficult to realize the multifunctionality and light integration.Here,flat multifunctional liquid crystal elements(FMLCEs),merely composed of anisotropic LC molecules with space-variant orientations,are presented for multichannel information manipulation by means of polarization,space and wavelength multiplexing.Specifically,benefiting from the unique light response with the change of the incident polarization,observation plane,and working wavelength,a series of FMLCEs are demonstrated to achieve distinct near-and far-field display functions.The proposed strategy takes full advantage of basic optical parameters as the decrypted keys to improve the information capacity and security,and we expect it to find potential applications in information encryption,optical anti-counterfeiting,virtual/augmented reality,etc.展开更多
Color metasurface holograms are powerful and versatile platforms for modulating the amplitude,phase,polarization,and other properties of light at multiple operating wavelengths.However,the current color metasurface ho...Color metasurface holograms are powerful and versatile platforms for modulating the amplitude,phase,polarization,and other properties of light at multiple operating wavelengths.However,the current color metasurface holography can only realize static manipulation.In this study,we propose and demonstrate a multiplexing metasurface technique combined with multiwavelength code-division multiplexing(CDM)to realize dynamic manipulation.Multicolor code references are utilized to record information within a single metasurface and increase the information capacity and security for anticracks.A total of 48 monochrome images consisting of pure color characters and multilevel color video frames were reconstructed in dual polarization channels of the birefringent metasurface to exhibit high information density,and a video was displayed via sequential illumination of the corresponding code patterns to verify the ability of dynamic manipulation.Our approach demonstrates significant application potential in optical data storage,optical encryption,multiwavelengthversatile diffractive optical elements,and stimulated emission depletion microscopy.展开更多
As a promising counterpart of two-dimensional metamaterials,metasurfaces enable to arbitrarily control the wavefront of light at subwavelength scale and hold promise for planar holography and applicable multiplexing d...As a promising counterpart of two-dimensional metamaterials,metasurfaces enable to arbitrarily control the wavefront of light at subwavelength scale and hold promise for planar holography and applicable multiplexing devices.Nevertheless,the degrees of freedom(DoF)to orthogonally multiplex data have been almost exhausted.Compared with state-of-theart methods that extensively employ the orthogonal basis such as wavelength,polarization or orbital angular momentum,we propose an unprecedented method of peristrophic multiplexing by combining the spatial frequency orthogonality with the subwavelength detour phase principle.The orthogonal relationship between the spatial frequency of incident light and the locally shifted building blocks of metasurfaces can be regarded as an additional DoF.We experimentally demonstrate the viability of the multiplexed holograms.Moreover,this newly-explored orthogonality is compatible with conventional DoFs.Our findings will contribute to the development of multiplexing metasurfaces and provide a novel solution to nanophotonics,such as large-capacity chip-scale devices and highly integrated communication.展开更多
Quantum key distribution(QKD) generates information-theoretical secure keys between two parties based on the physical laws of quantum mechanics. The phase-matching(PM) QKD protocol allows the key rate to break the qua...Quantum key distribution(QKD) generates information-theoretical secure keys between two parties based on the physical laws of quantum mechanics. The phase-matching(PM) QKD protocol allows the key rate to break the quantum channel secret key capacity limit without quantum repeaters, and the security of the protocol is demonstrated by using equivalent entanglement. In this paper, the wavelength division multiplexing(WDM) technique is applied to the PM-QKD protocol considering the effect of crosstalk noise on the secret key rate. The performance of PM-QKD protocol based on WDM with the influence of adjacent classical channels and Raman scattering is analyzed by numerical simulations to maximize the total secret key rate of the QKD, providing a reference for future implementations of QKD based on WDM techniques.展开更多
This paper presents an extension of certain forms of the real Paley-Wiener theorems to the Minkowski space-time algebra. Our emphasis is dedicated to determining the space-time valued functions whose space-time Fourie...This paper presents an extension of certain forms of the real Paley-Wiener theorems to the Minkowski space-time algebra. Our emphasis is dedicated to determining the space-time valued functions whose space-time Fourier transforms(SFT) have compact support using the partial derivatives operator and the Dirac operator of higher order.展开更多
We consider the two-point,two-time(space-time)correlation of passive scalar R(r,τ)in the Kraichnan model under the assumption of homogeneity and isotropy.Using the fine-gird PDF method,we find that R(r,τ)satisfies a...We consider the two-point,two-time(space-time)correlation of passive scalar R(r,τ)in the Kraichnan model under the assumption of homogeneity and isotropy.Using the fine-gird PDF method,we find that R(r,τ)satisfies a diffusion equation with constant diffusion coefficient determined by velocity variance and molecular diffusion.Itssolution can be expressed in terms of the two-point,one time correlation of passive scalar,i.e.,R(r,0).Moreover,the decorrelation o R(k,τ),which is the Fourier transform of R(r,τ),is determined byR(k,0)and a diffusion kernal.展开更多
As the main food source for humans, the global movement of the three major grains significantly impacts human survival and development. To investigate the evolution of the world cereal trade network and its developmen...As the main food source for humans, the global movement of the three major grains significantly impacts human survival and development. To investigate the evolution of the world cereal trade network and its development trend, a weighted directed dynamic multiplexed network was established using historical data on cereal trade, cereal import dependency ratio, and arable land per capita. Inspired by the MLP framework, we redefined the weight determination method for computing layer weights and edge weights of the target layer, modified the CN, RA, AA, and PA indicators, and proposed the node similarity indicator for weighted directed networks. The AUC metric, which measures the accuracy of the algorithm, has also been improved in order to finally obtain the link prediction results for the grain trading network. The prediction results were processed, such as web-based presentation and community partition. It was found that the number of generalized trade agreements does not have a decisive impact on inter-country cereal trade. The former large grain exporters continue to play an important role in this trade network. In the future, the world trade in cereals will develop in the direction of more frequent intercontinental trade and gradually weaken the intracontinental cereal trade.展开更多
Weakly-coupled mode division multiplexing(MDM)technique is considered a promising candidate to enhance the capacity of an optical transmission system,in which mode multiplexers/demultiplexers(MMUX/MDEMUX)with low inse...Weakly-coupled mode division multiplexing(MDM)technique is considered a promising candidate to enhance the capacity of an optical transmission system,in which mode multiplexers/demultiplexers(MMUX/MDEMUX)with low insertion loss and modal crosstalk are the key components.In this paper,a low-modal-crosstalk 4-mode MMUX/MDEMUX for the weakly-coupled triple-ring-core few-mode fiber(TRC-FMF)is designed and fabricated with side-polishing processing.The measurement results show that a pair of MMUX/MDEMUX and 25 km weakly-coupled TRC-FMF MDM link achieve low modal crosstalk of lower than−17.5 dB and insertion loss of lower than 11.56 dB for all the four modes.Based on the TRC-FMF and all-fiber MMUX/MDEMUX,an experiment for 25 km real-time 4-mode 3-λwavelength division multiplexing(WDM)-MDM transmission is conducted using commercial 400G optical transport network(OTN)transceivers.The experimental results prove weakly-coupled MDM techniques facilitate a smooth upgrade of the optical transmission system.展开更多
With the development of wireless communication,the 6G mobile communication technology has received wide attention.As one of the key technologies of 6G,terahertz(THz)communication technology has the characteristics of ...With the development of wireless communication,the 6G mobile communication technology has received wide attention.As one of the key technologies of 6G,terahertz(THz)communication technology has the characteristics of ultra-high bandwidth,high security and low environmental noise.In this paper,a THz duplexer with a half-wavelength coupling structure and a sub-harmonic mixer operating at 216 GHz and 204 GHz are designed and measured.Based on these key devices,a 220 GHz frequency-division multiplexing communication system is proposed,with a real-time data rate of 10.4 Gbit/s for one channel and a transmission distance of 15 m.The measured constellation diagram of two receivers is clearly visible,the signal-to-noise ratio(SNR)is higher than 22 dB,and the bit error ratio(BER)is less than 10^(−8).Furthermore,the high definition(HD)4K video can also be transmitted in real time without stutter.展开更多
We have recently published a series of papers on a theory we call collision space-time, that seems to unify gravity and quantum mechanics. In this theory, mass and energy are redefined. We have not so far demonstrated...We have recently published a series of papers on a theory we call collision space-time, that seems to unify gravity and quantum mechanics. In this theory, mass and energy are redefined. We have not so far demonstrated how to make it compatible with electric properties such as charge and the Coulomb force. The aim of this paper is to show how electric properties can be reformulated to make it consistent with collision space-time. It is shown that we need to incorporate the Planck scale into the electric constants to do so. This is also fully possible from a practical point of view, as it has recently been shown how to measure the Planck length independent of other constants and without the need for dimensional analysis.展开更多
The integrity of the chromosomes for two WIL2-derived lymphoblastoid cell lines (TK6 and WTK1) in the presence and absence of ionizing radiation was analyzed by Multiplex Ligation-Dependent Probe Amplification (MLPA)....The integrity of the chromosomes for two WIL2-derived lymphoblastoid cell lines (TK6 and WTK1) in the presence and absence of ionizing radiation was analyzed by Multiplex Ligation-Dependent Probe Amplification (MLPA). The TK6 cell line has the native p53 tumor-suppressor gene, whereas WTK1 cells contain a p53 mutation. Each cell line was isolated pre- and post-irradiation (2 and 3 Gy) and analyzed by MLPA. The impact of irradiation on these two cell lines was investigated using probes that target specific regions on chromosomes associated with subtelomeric regions. Results indicate that WTK1 and TK6 are impacted differently after irradiation, and that each cell line presents its own unique MLPA profile. The most notable differences are the appearance of a number of probes in the post-irradiated MLPA profile that are not present in the controls, and two unique probe signals only seen in WTK1 cells. These results build on our previous studies that indicate how different human cell lines can be affected by radiation in significantly different ways depending on the presence or absence of wild type p53.展开更多
Purpose: The genus Pseudomonas is a ubiquitous microorganism frequently detected from immunocompromised patients. The inherent resistance to numerous antimicrobial agents contributes to the opportunistic character of ...Purpose: The genus Pseudomonas is a ubiquitous microorganism frequently detected from immunocompromised patients. The inherent resistance to numerous antimicrobial agents contributes to the opportunistic character of this pathogen exhaustive monitoring of this pathogen is considered of critical importance to public health organizations. The reliable identification method able to distinguish genetic close Pseudomonas species is needed, because these organisms are difficult to differentiate by phenotypic or biochemical methods. The purpose of the present study was to design species-specific primers in order to identify and detect four Pseudomonas species which are frequently detected from the human oral cavities, and to investigate the distribution of these organisms in the living environment using a multiplex PCR. Methods: Polymerase chain reaction (PCR) primers were designed based on partial sequences of the rpoD gene of four Pseudomonas species. Swab samples were collected from fifty washstands, and the distribution of Pseudomonas species was investigated using a conventional PCR at genus level and a multiplex PCR at species level. Results: Multiplex PCR method developed in this study was able to distinguish four Pseudomonas species clearly. The genus Pseudomonas was detected from all samples (100%), whereas P. putida, P, aeruginosa, P. stutzeri and P. fluorescens were detected at 44%, 8%, 4% and 2% in fifty swab samples, respectively. Conclusion: Our developed one-step multiplex PCR method is accurate, specific, cost-effective, time-saving, and works without requiring DNA extraction. It was indicated that washstands were the uninhabitable environment for P. putida, P, aeruginosa, P. stutzeri and P. fluorescens.展开更多
The development and maturation of the CRISPR/Cas genome editing system provides a valuable tool for plant functional genomics and genetic improvement.Currently available genome-editing tools have a limited number of t...The development and maturation of the CRISPR/Cas genome editing system provides a valuable tool for plant functional genomics and genetic improvement.Currently available genome-editing tools have a limited number of targets,restricting their application in genetic research.In this study,we developed a novel CRISPR/Cas9 plant ultra-multiplex genome editing system consisting of two template vectors,eight donor vectors,four destination vectors,and one primer-design software package.By combining the advantages of Golden Gate cloning to assemble multiple repetitive fragments and Gateway recombination to assemble large fragments and by changing the structure of the amplicons used to assemble sg RNA expression cassettes,the plant ultra-multiplex genome editing system can assemble a single binary vector targeting more than 40 genomic loci.A rice knockout vector containing 49 sg RNA expression cassettes was assembled and a high co-editing efficiency was observed.This plant ultra-multiplex genome editing system advances synthetic biology and plant genetic engineering.展开更多
Laser absorption spectroscopy has proven to be an effective approach for gas sensing, which plays an important rolein the fields of military, industry, medicine and basic research. This paper presents a multiplexed ga...Laser absorption spectroscopy has proven to be an effective approach for gas sensing, which plays an important rolein the fields of military, industry, medicine and basic research. This paper presents a multiplexed gas sensing system basedon optical frequency comb (OFC) calibrated frequency-modulated continuous-wave (FMCW) tuning nonlinearity. Thesystem can be used for multi-parameter synchronous measurement of gas absorption spectrum and multiplexed opticalpath. Multi-channel parallel detection is realized by combining wavelength division multiplexing (WDM) and frequencydivision multiplexing (FDM) techniques. By introducing nonlinear optical crystals, broadband spectrum detection is simultaneouslyachieved over a bandwidth of hundreds of nanometers. An OFC with ultra-high frequency stability is used asthe frequency calibration source, which guarantees the measurement accuracy. The test samples involve H13C14N, C_(2)H_(2)and Rb vapor cells of varying densities and 5 parallel measurement experiments are designed. The results show that themeasurement accuracies of spectral absorption line and the optical path are 150 MHz and 20 m, respectively. The schemeoffers the advantages of multiplexed, multi-parameter, wide spectrum and high resolution detection, which can realize theidentification of multi-gas components and the high-precision inversion of absorption lines under different environments.The proposed sensor demonstrates great potential in the field of high-resolution absorption spectrum measurement for gassensing applications.展开更多
BACKGROUND Influenza A and B virus detection is pivotal in epidemiological surveillance and disease management.Rapid and accurate diagnostic techniques are crucial for timely clinical intervention and outbreak prevent...BACKGROUND Influenza A and B virus detection is pivotal in epidemiological surveillance and disease management.Rapid and accurate diagnostic techniques are crucial for timely clinical intervention and outbreak prevention.Quantum dot-encoded microspheres have been widely used in immunodetection.The integration of quantum dot-encoded microspheres with flow cytometry is a well-established technique that enables rapid analysis.Thus,establishing a multiplex detection method for influenza A and B virus antigens based on flow cytometry quantum dot microspheres will help in disease diagnosis.AIM To establish a codetection method of influenza A and B virus antigens based on flow cytometry quantum dot-encoded microsphere technology,which forms the foundation for the assays of multiple respiratory virus biomarkers.METHODS Different quantum dot-encoded microspheres were used to couple the monoclonal antibodies against influenza A and B.The known influenza A and B antigens were detected both separately and simultaneously on a flow cytometer,and the detection conditions were optimized to establish the influenza A and B antigen codetection method,which was utilized for their detection in clinical samples.The results were compared with the fluorescence quantitative polymerase chain reaction(PCR)method to validate the clinical performance of this method.RESULTS The limits of detection of this method were 26.1 and 10.7 pg/mL for influenza A and B antigens,respectively,which both ranged from 15.6 to 250000 pg/mL.In the clinical sample evaluation,the proposed method well correlated with the fluorescent quantitative PCR method,with positive,negative,and overall compliance rates of 57.4%,100%,and 71.6%,respectively.CONCLUSION A multiplex assay for quantitative detection of influenza A and B virus antigens has been established,which is characterized by high sensitivity,good specificity,and a wide detection range and is promising for clinical applications.展开更多
基金support from the National Natural Science Foundation of China (No.62005164,62222507,62175101,and 62005166)the Shanghai Natural Science Foundation (23ZR1443700)+3 种基金Shuguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission (23SG41)the Young Elite Scientist Sponsorship Program by CAST (No.20220042)Science and Technology Commission of Shanghai Municipality (Grant No.21DZ1100500)the Shanghai Municipal Science and Technology Major Project,and the Shanghai Frontiers Science Center Program (2021-2025 No.20).
文摘Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since the amount of available information channels is limited.Herein,we propose and demonstrate an optical secret sharing framework based on the multi-dimensional multiplexing liquid crystal(LC)holograms.The LC holograms are used as spatially separated shares to carry secret images.The polarization of the incident light and the distance between different shares are served as secret keys,which can significantly improve the information security and capacity.Besides,the decryption condition is also restricted by the applied external voltage due to the variant diffraction efficiency,which further increases the information security.In implementation,an artificial neural network(ANN)model is developed to carefully design the phase distribution of each LC hologram.With the advantage of high security,high capacity and simple configuration,our optical secret sharing framework has great potentials in optical encryption and dynamic holographic display.
基金supported by the Shenzhen sustainable development project:KCXFZ 20201221173013036 and the National Natural Science Foundation of China(91746107).
文摘In this paper,we mainly discuss a discrete estimation of the average differential entropy for a continuous time-stationary ergodic space-time random field.By estimating the probability value of a time-stationary random field in a small range,we give an entropy estimation and obtain the average entropy estimation formula in a certain bounded space region.It can be proven that the estimation of the average differential entropy converges to the theoretical value with a probability of 1.In addition,we also conducted numerical experiments for different parameters to verify the convergence result obtained in the theoretical proofs.
基金supported by the National Natural Science Foundation of China (No.61971412)。
文摘Underwater monopulse space-time adaptive track-before-detect method,which combines space-time adaptive detector(STAD)and the track-before-detect algorithm based on dynamic programming(DP-TBD),denoted as STAD-DP-TBD,can effectively detect low-speed weak targets.However,due to the complexity and variability of the underwater environment,it is difficult to obtain sufficient secondary data,resulting in a serious decline in the detection and tracking performance,and leading to poor robustness of the algorithm.In this paper,based on the adaptive matched filter(AMF)test and the RAO test,underwater monopulse AMF-DP-TBD algorithm and RAO-DP-TBD algorithm which incorporate persymmetry and symmetric spectrum,denoted as PSAMF-DP-TBD and PS-RAO-DP-TBD,are proposed and compared with the AMF-DP-TBD algorithm and RAO-DP-TBD algorithm based on persymmetry array,denoted as P-AMF-DP-TBD and P-RAO-DP-TBD.The simulation results show that the four methods can work normally with sufficient secondary data and slightly insufficient secondary data,but when the secondary data is severely insufficient,the P-AMF-DP-TBD and P-RAO-DP-TBD algorithms has failed while the PSAMF-DP-TBD and PS-RAO-DP-TBD algorithms still have good detection and tracking capabilities.
文摘This paper presents a physically plausible and somewhat illuminating first step in extending the fundamental principles of mechanical stress and strain to space-time. Here the geometry of space-time, encoded in the metric tensor, is considered to be made up of a dynamic lattice of extremely small, localized fields that form a perfectly elastic Lorentz symmetric space-time at the global (macroscopic) scale. This theoretical model of space-time at the Planck scale leads to a somewhat surprising result in which matter waves in curved space-time radiate thermal gravitational energy, as well as an equally intriguing relationship for the anomalous dispersion of light in a gravitational field.
基金supported by the National Natural Science Foundation of China(52372310)the State Key Laboratory of Advanced Rail Autonomous Operation(RAO2023ZZ001)+1 种基金the Fundamental Research Funds for the Central Universities(2022JBQY001)Beijing Laboratory of Urban Rail Transit.
文摘The emerging virtual coupling technology aims to operate multiple train units in a Virtually Coupled Train Set(VCTS)at a minimal but safe distance.To guarantee collision avoidance,the safety distance should be calculated using the state-of-the-art space-time separation principle that separates the Emergency Braking(EB)trajectories of two successive units during the whole EB process.In this case,the minimal safety distance is usually numerically calculated without an analytic formulation.Thus,the constrained VCTS control problem is hard to address with space-time separation,which is still a gap in the existing literature.To solve this problem,we propose a Distributed Economic Model Predictive Control(DEMPC)approach with computation efficiency and theoretical guarantee.Specifically,to alleviate the computation burden,we transform implicit safety constraints into explicitly linear ones,such that the optimal control problem in DEMPC is a quadratic programming problem that can be solved efficiently.For theoretical analysis,sufficient conditions are derived to guarantee the recursive feasibility and stability of DEMPC,employing compatibility constraints,tube techniques and terminal ingredient tuning.Moreover,we extend our approach with globally optimal and distributed online EB configuration methods to shorten the minimal distance among VCTS.Finally,experimental results demonstrate the performance and advantages of the proposed approaches.
基金the supports from the National Natural Science Foundation of China (61905073, 61835004, 62134001, 61905031, 62105263, 62275077)Fundamental Research Fund for the Central Universities (531118010189, 310202011qd002)+1 种基金the support from Xi’an Science and Technology Association Youth Talent Support Project (095920211306)the Postdoctoral Innovation Talent Support Program of China (BX20220388)
文摘Flat optical elements have attracted enormous attentions and act as promising candidates for the next generation of optical components.As one of the most outstanding representatives,liquid crystal(LC)has been widely applied in flat panel display industries and inspires the wavefront modulation with the development of LC alignment techniques.However,most LC elements perform only one type of optical manipulation and are difficult to realize the multifunctionality and light integration.Here,flat multifunctional liquid crystal elements(FMLCEs),merely composed of anisotropic LC molecules with space-variant orientations,are presented for multichannel information manipulation by means of polarization,space and wavelength multiplexing.Specifically,benefiting from the unique light response with the change of the incident polarization,observation plane,and working wavelength,a series of FMLCEs are demonstrated to achieve distinct near-and far-field display functions.The proposed strategy takes full advantage of basic optical parameters as the decrypted keys to improve the information capacity and security,and we expect it to find potential applications in information encryption,optical anti-counterfeiting,virtual/augmented reality,etc.
基金the National Key R&D Program of China(2021YFA1401200)Beijing Outstanding Young Scientist Program(BJJWZYJH01201910007022)+2 种基金National Natural Science Foundation of China(No.U21A20140,No.92050117)Beijing Municipal Science&Technology Commission,Administrative Commission of Zhongguancun Science Park(No.Z211100004821009)X.Li acknowledges the support from Beijing Institute of Technology Research Fund Program for Young Scholars(XSQD-201904005).
文摘Color metasurface holograms are powerful and versatile platforms for modulating the amplitude,phase,polarization,and other properties of light at multiple operating wavelengths.However,the current color metasurface holography can only realize static manipulation.In this study,we propose and demonstrate a multiplexing metasurface technique combined with multiwavelength code-division multiplexing(CDM)to realize dynamic manipulation.Multicolor code references are utilized to record information within a single metasurface and increase the information capacity and security for anticracks.A total of 48 monochrome images consisting of pure color characters and multilevel color video frames were reconstructed in dual polarization channels of the birefringent metasurface to exhibit high information density,and a video was displayed via sequential illumination of the corresponding code patterns to verify the ability of dynamic manipulation.Our approach demonstrates significant application potential in optical data storage,optical encryption,multiwavelengthversatile diffractive optical elements,and stimulated emission depletion microscopy.
基金supported by the Science and Technology Projects of Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province(IKKEM)No.HRTP202231partially supported by the Agency for Science,Technology,and Research(A*STAR)under AME IRG Grant Nos.A20E5c0095,and CDF Grant No.C210112044。
文摘As a promising counterpart of two-dimensional metamaterials,metasurfaces enable to arbitrarily control the wavefront of light at subwavelength scale and hold promise for planar holography and applicable multiplexing devices.Nevertheless,the degrees of freedom(DoF)to orthogonally multiplex data have been almost exhausted.Compared with state-of-theart methods that extensively employ the orthogonal basis such as wavelength,polarization or orbital angular momentum,we propose an unprecedented method of peristrophic multiplexing by combining the spatial frequency orthogonality with the subwavelength detour phase principle.The orthogonal relationship between the spatial frequency of incident light and the locally shifted building blocks of metasurfaces can be regarded as an additional DoF.We experimentally demonstrate the viability of the multiplexed holograms.Moreover,this newly-explored orthogonality is compatible with conventional DoFs.Our findings will contribute to the development of multiplexing metasurfaces and provide a novel solution to nanophotonics,such as large-capacity chip-scale devices and highly integrated communication.
基金supported by the State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications) (Grant No. IPOC2021ZT10)the National Natural Science Foundation of China (Grant No. 11904333)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No. 2019XDA02)BUPT Innovation and Entrepreneurship Support Program (Grant No. 2022-YC-T051)。
文摘Quantum key distribution(QKD) generates information-theoretical secure keys between two parties based on the physical laws of quantum mechanics. The phase-matching(PM) QKD protocol allows the key rate to break the quantum channel secret key capacity limit without quantum repeaters, and the security of the protocol is demonstrated by using equivalent entanglement. In this paper, the wavelength division multiplexing(WDM) technique is applied to the PM-QKD protocol considering the effect of crosstalk noise on the secret key rate. The performance of PM-QKD protocol based on WDM with the influence of adjacent classical channels and Raman scattering is analyzed by numerical simulations to maximize the total secret key rate of the QKD, providing a reference for future implementations of QKD based on WDM techniques.
基金supported by the Deanship of Scientific Research at King Khalid University,Saudi Arabia (R.G.P.1/207/43)。
文摘This paper presents an extension of certain forms of the real Paley-Wiener theorems to the Minkowski space-time algebra. Our emphasis is dedicated to determining the space-time valued functions whose space-time Fourier transforms(SFT) have compact support using the partial derivatives operator and the Dirac operator of higher order.
基金supported by the National Natural Science Foun-dation of China(NSFC)Basic Science Center Program for“Multiscale Problems in Nonlinear Mechanics”(Grant No.11988102).
文摘We consider the two-point,two-time(space-time)correlation of passive scalar R(r,τ)in the Kraichnan model under the assumption of homogeneity and isotropy.Using the fine-gird PDF method,we find that R(r,τ)satisfies a diffusion equation with constant diffusion coefficient determined by velocity variance and molecular diffusion.Itssolution can be expressed in terms of the two-point,one time correlation of passive scalar,i.e.,R(r,0).Moreover,the decorrelation o R(k,τ),which is the Fourier transform of R(r,τ),is determined byR(k,0)and a diffusion kernal.
文摘As the main food source for humans, the global movement of the three major grains significantly impacts human survival and development. To investigate the evolution of the world cereal trade network and its development trend, a weighted directed dynamic multiplexed network was established using historical data on cereal trade, cereal import dependency ratio, and arable land per capita. Inspired by the MLP framework, we redefined the weight determination method for computing layer weights and edge weights of the target layer, modified the CN, RA, AA, and PA indicators, and proposed the node similarity indicator for weighted directed networks. The AUC metric, which measures the accuracy of the algorithm, has also been improved in order to finally obtain the link prediction results for the grain trading network. The prediction results were processed, such as web-based presentation and community partition. It was found that the number of generalized trade agreements does not have a decisive impact on inter-country cereal trade. The former large grain exporters continue to play an important role in this trade network. In the future, the world trade in cereals will develop in the direction of more frequent intercontinental trade and gradually weaken the intracontinental cereal trade.
基金supported in part by the ZTE Industry-University-Institute Cooperation Funds.
文摘Weakly-coupled mode division multiplexing(MDM)technique is considered a promising candidate to enhance the capacity of an optical transmission system,in which mode multiplexers/demultiplexers(MMUX/MDEMUX)with low insertion loss and modal crosstalk are the key components.In this paper,a low-modal-crosstalk 4-mode MMUX/MDEMUX for the weakly-coupled triple-ring-core few-mode fiber(TRC-FMF)is designed and fabricated with side-polishing processing.The measurement results show that a pair of MMUX/MDEMUX and 25 km weakly-coupled TRC-FMF MDM link achieve low modal crosstalk of lower than−17.5 dB and insertion loss of lower than 11.56 dB for all the four modes.Based on the TRC-FMF and all-fiber MMUX/MDEMUX,an experiment for 25 km real-time 4-mode 3-λwavelength division multiplexing(WDM)-MDM transmission is conducted using commercial 400G optical transport network(OTN)transceivers.The experimental results prove weakly-coupled MDM techniques facilitate a smooth upgrade of the optical transmission system.
基金supported by the National Natural Science Foundation of China under Grant Nos.62022022 and 62101107the National Key R&D Program of China under Grant No.2018YFB1801502+1 种基金China Postdoctoral Science Foundation under Grant No.2021TQ0057ZTE Industry-Uni⁃versity-Institute Cooperation Funds.
文摘With the development of wireless communication,the 6G mobile communication technology has received wide attention.As one of the key technologies of 6G,terahertz(THz)communication technology has the characteristics of ultra-high bandwidth,high security and low environmental noise.In this paper,a THz duplexer with a half-wavelength coupling structure and a sub-harmonic mixer operating at 216 GHz and 204 GHz are designed and measured.Based on these key devices,a 220 GHz frequency-division multiplexing communication system is proposed,with a real-time data rate of 10.4 Gbit/s for one channel and a transmission distance of 15 m.The measured constellation diagram of two receivers is clearly visible,the signal-to-noise ratio(SNR)is higher than 22 dB,and the bit error ratio(BER)is less than 10^(−8).Furthermore,the high definition(HD)4K video can also be transmitted in real time without stutter.
文摘We have recently published a series of papers on a theory we call collision space-time, that seems to unify gravity and quantum mechanics. In this theory, mass and energy are redefined. We have not so far demonstrated how to make it compatible with electric properties such as charge and the Coulomb force. The aim of this paper is to show how electric properties can be reformulated to make it consistent with collision space-time. It is shown that we need to incorporate the Planck scale into the electric constants to do so. This is also fully possible from a practical point of view, as it has recently been shown how to measure the Planck length independent of other constants and without the need for dimensional analysis.
文摘The integrity of the chromosomes for two WIL2-derived lymphoblastoid cell lines (TK6 and WTK1) in the presence and absence of ionizing radiation was analyzed by Multiplex Ligation-Dependent Probe Amplification (MLPA). The TK6 cell line has the native p53 tumor-suppressor gene, whereas WTK1 cells contain a p53 mutation. Each cell line was isolated pre- and post-irradiation (2 and 3 Gy) and analyzed by MLPA. The impact of irradiation on these two cell lines was investigated using probes that target specific regions on chromosomes associated with subtelomeric regions. Results indicate that WTK1 and TK6 are impacted differently after irradiation, and that each cell line presents its own unique MLPA profile. The most notable differences are the appearance of a number of probes in the post-irradiated MLPA profile that are not present in the controls, and two unique probe signals only seen in WTK1 cells. These results build on our previous studies that indicate how different human cell lines can be affected by radiation in significantly different ways depending on the presence or absence of wild type p53.
文摘Purpose: The genus Pseudomonas is a ubiquitous microorganism frequently detected from immunocompromised patients. The inherent resistance to numerous antimicrobial agents contributes to the opportunistic character of this pathogen exhaustive monitoring of this pathogen is considered of critical importance to public health organizations. The reliable identification method able to distinguish genetic close Pseudomonas species is needed, because these organisms are difficult to differentiate by phenotypic or biochemical methods. The purpose of the present study was to design species-specific primers in order to identify and detect four Pseudomonas species which are frequently detected from the human oral cavities, and to investigate the distribution of these organisms in the living environment using a multiplex PCR. Methods: Polymerase chain reaction (PCR) primers were designed based on partial sequences of the rpoD gene of four Pseudomonas species. Swab samples were collected from fifty washstands, and the distribution of Pseudomonas species was investigated using a conventional PCR at genus level and a multiplex PCR at species level. Results: Multiplex PCR method developed in this study was able to distinguish four Pseudomonas species clearly. The genus Pseudomonas was detected from all samples (100%), whereas P. putida, P, aeruginosa, P. stutzeri and P. fluorescens were detected at 44%, 8%, 4% and 2% in fifty swab samples, respectively. Conclusion: Our developed one-step multiplex PCR method is accurate, specific, cost-effective, time-saving, and works without requiring DNA extraction. It was indicated that washstands were the uninhabitable environment for P. putida, P, aeruginosa, P. stutzeri and P. fluorescens.
基金supported by the National Natural Science Foundation of China(32001532 and 31860411)the National Key Research and Development Program of China,(2022YFF1000020)+1 种基金Hunan Seed Industry Innovation Project(2021NK1012)the Yunnan Tobacco Company Project(2020530000241009)。
文摘The development and maturation of the CRISPR/Cas genome editing system provides a valuable tool for plant functional genomics and genetic improvement.Currently available genome-editing tools have a limited number of targets,restricting their application in genetic research.In this study,we developed a novel CRISPR/Cas9 plant ultra-multiplex genome editing system consisting of two template vectors,eight donor vectors,four destination vectors,and one primer-design software package.By combining the advantages of Golden Gate cloning to assemble multiple repetitive fragments and Gateway recombination to assemble large fragments and by changing the structure of the amplicons used to assemble sg RNA expression cassettes,the plant ultra-multiplex genome editing system can assemble a single binary vector targeting more than 40 genomic loci.A rice knockout vector containing 49 sg RNA expression cassettes was assembled and a high co-editing efficiency was observed.This plant ultra-multiplex genome editing system advances synthetic biology and plant genetic engineering.
基金the National Natural Science Foun-dation of China(Grant No.52375546)the National Key Research and Development Program of China(Grant No.2022YFF0705701).
文摘Laser absorption spectroscopy has proven to be an effective approach for gas sensing, which plays an important rolein the fields of military, industry, medicine and basic research. This paper presents a multiplexed gas sensing system basedon optical frequency comb (OFC) calibrated frequency-modulated continuous-wave (FMCW) tuning nonlinearity. Thesystem can be used for multi-parameter synchronous measurement of gas absorption spectrum and multiplexed opticalpath. Multi-channel parallel detection is realized by combining wavelength division multiplexing (WDM) and frequencydivision multiplexing (FDM) techniques. By introducing nonlinear optical crystals, broadband spectrum detection is simultaneouslyachieved over a bandwidth of hundreds of nanometers. An OFC with ultra-high frequency stability is used asthe frequency calibration source, which guarantees the measurement accuracy. The test samples involve H13C14N, C_(2)H_(2)and Rb vapor cells of varying densities and 5 parallel measurement experiments are designed. The results show that themeasurement accuracies of spectral absorption line and the optical path are 150 MHz and 20 m, respectively. The schemeoffers the advantages of multiplexed, multi-parameter, wide spectrum and high resolution detection, which can realize theidentification of multi-gas components and the high-precision inversion of absorption lines under different environments.The proposed sensor demonstrates great potential in the field of high-resolution absorption spectrum measurement for gassensing applications.
基金Shenzhen Guangming District Soft Science Research Project,No.2021R01097。
文摘BACKGROUND Influenza A and B virus detection is pivotal in epidemiological surveillance and disease management.Rapid and accurate diagnostic techniques are crucial for timely clinical intervention and outbreak prevention.Quantum dot-encoded microspheres have been widely used in immunodetection.The integration of quantum dot-encoded microspheres with flow cytometry is a well-established technique that enables rapid analysis.Thus,establishing a multiplex detection method for influenza A and B virus antigens based on flow cytometry quantum dot microspheres will help in disease diagnosis.AIM To establish a codetection method of influenza A and B virus antigens based on flow cytometry quantum dot-encoded microsphere technology,which forms the foundation for the assays of multiple respiratory virus biomarkers.METHODS Different quantum dot-encoded microspheres were used to couple the monoclonal antibodies against influenza A and B.The known influenza A and B antigens were detected both separately and simultaneously on a flow cytometer,and the detection conditions were optimized to establish the influenza A and B antigen codetection method,which was utilized for their detection in clinical samples.The results were compared with the fluorescence quantitative polymerase chain reaction(PCR)method to validate the clinical performance of this method.RESULTS The limits of detection of this method were 26.1 and 10.7 pg/mL for influenza A and B antigens,respectively,which both ranged from 15.6 to 250000 pg/mL.In the clinical sample evaluation,the proposed method well correlated with the fluorescent quantitative PCR method,with positive,negative,and overall compliance rates of 57.4%,100%,and 71.6%,respectively.CONCLUSION A multiplex assay for quantitative detection of influenza A and B virus antigens has been established,which is characterized by high sensitivity,good specificity,and a wide detection range and is promising for clinical applications.