Bistatic/multistatic radar has great potential advantages over its monostatic counterpart. However, the separation of a transmitter and a receiver leads to difficulties in locating the target position accurately and g...Bistatic/multistatic radar has great potential advantages over its monostatic counterpart. However, the separation of a transmitter and a receiver leads to difficulties in locating the target position accurately and guaranteeing space-timefrequency synchronization of the transmitter and the receiver.The error model of space-time-frequency synchronization in a motion platform of bistatic/multistatic radar is studied. The relationship between the space synchronization error and the transmitter platform position, receiver platform position, moving state, and beam pointing error, is analyzed. The effect of space synchronization error on target echo power is studied. The target scattering characteristics are restructured by many separate scattering centers of the target in high frequency regions. Based on the scattering centers model of the radar target, this radar target echo model and the simulation method are discussed. The algorithm of bistatic/multistatic radar target echo accurately reflects the scattering characteristics of the radar target, pulse modulation speciality of radar transmitting signals, and spacetime-frequency synchronization error characteristics between the transmitter station and the receiver station. The simulation of bistatic radar is completed in computer, and the results of the simulation validate the feasibility of the method.展开更多
In recent years,moving target detection methods based on low-rank and sparse matrix decomposition have been developed,and they have achieved good results.However,there is not enough interpretation to support the assum...In recent years,moving target detection methods based on low-rank and sparse matrix decomposition have been developed,and they have achieved good results.However,there is not enough interpretation to support the assumption that there is a high correlation among the reverberations after each transmitting pulse.In order to explain the correlation of reverberations,a new reverberation model is proposed from the perspective of scattering cells in this paper.The scattering cells are the subarea divided from the detection area.The energy fluctuation of a scattering cell with time and the influence of the neighboring cells are considered.Key parameters of the model were analyzed by numerical analysis,and the applicability of the model was verified by experimental analysis.The results showed that the model can be used for several simulations to evaluate the performance of moving target detection methods.展开更多
This paper prcscnts a practical model of echoes for sonar engineering. Based on that the sonar systems usually use high frequency band-limited signals, the transfer function is appropriatc to characterize the target. ...This paper prcscnts a practical model of echoes for sonar engineering. Based on that the sonar systems usually use high frequency band-limited signals, the transfer function is appropriatc to characterize the target. At high frequencics, all echo components such as the specular reflected waves, the corner waves and the various clastic scattering waves can be thought of the returns from some equivalent scattering centres or highlights. The whole target is characterizcd by a group of the highlight in space.In this paper a general expression of the transfer function of the highlight is derived, which includes the amplitude factor, thc time delay and the phase jump. A determined parameter group provides a concrete target model.Simulation of the echo waveform can also be performed using the prescnted model.展开更多
针对现有超宽带穿墙雷达时域波束成像分辨率低、旁瓣高以及干扰抑制能力弱等问题,提出利用稳健Capon波束形成对目标成像的方法。该方法基于目标回波模型首先补偿近场扩散损耗、墙体传播损耗和折射效应,实现天线阵列接收数据的配准,利用...针对现有超宽带穿墙雷达时域波束成像分辨率低、旁瓣高以及干扰抑制能力弱等问题,提出利用稳健Capon波束形成对目标成像的方法。该方法基于目标回波模型首先补偿近场扩散损耗、墙体传播损耗和折射效应,实现天线阵列接收数据的配准,利用稳健Capon波束成像得到良好的成像分辨率和更好的干扰抑制能力。利用时域有限差分(finite-difference time domain,FDTD)数值仿真和实验数据实现了隐藏目标的二维成像,验证了该方法的有效性。展开更多
基金supported by the National Natural Science Foundation of China(61271327)
文摘Bistatic/multistatic radar has great potential advantages over its monostatic counterpart. However, the separation of a transmitter and a receiver leads to difficulties in locating the target position accurately and guaranteeing space-timefrequency synchronization of the transmitter and the receiver.The error model of space-time-frequency synchronization in a motion platform of bistatic/multistatic radar is studied. The relationship between the space synchronization error and the transmitter platform position, receiver platform position, moving state, and beam pointing error, is analyzed. The effect of space synchronization error on target echo power is studied. The target scattering characteristics are restructured by many separate scattering centers of the target in high frequency regions. Based on the scattering centers model of the radar target, this radar target echo model and the simulation method are discussed. The algorithm of bistatic/multistatic radar target echo accurately reflects the scattering characteristics of the radar target, pulse modulation speciality of radar transmitting signals, and spacetime-frequency synchronization error characteristics between the transmitter station and the receiver station. The simulation of bistatic radar is completed in computer, and the results of the simulation validate the feasibility of the method.
基金supported by the National Natural Science Foundation of China(Grant Nos.61631008,61471137,50509059,and No.51779061)the Fok Ying-Tong Education Foundation,China(Grant No.151007)the Heilongjiang Province Outstanding Youth Science Fund(JC2017017)
文摘In recent years,moving target detection methods based on low-rank and sparse matrix decomposition have been developed,and they have achieved good results.However,there is not enough interpretation to support the assumption that there is a high correlation among the reverberations after each transmitting pulse.In order to explain the correlation of reverberations,a new reverberation model is proposed from the perspective of scattering cells in this paper.The scattering cells are the subarea divided from the detection area.The energy fluctuation of a scattering cell with time and the influence of the neighboring cells are considered.Key parameters of the model were analyzed by numerical analysis,and the applicability of the model was verified by experimental analysis.The results showed that the model can be used for several simulations to evaluate the performance of moving target detection methods.
文摘This paper prcscnts a practical model of echoes for sonar engineering. Based on that the sonar systems usually use high frequency band-limited signals, the transfer function is appropriatc to characterize the target. At high frequencics, all echo components such as the specular reflected waves, the corner waves and the various clastic scattering waves can be thought of the returns from some equivalent scattering centres or highlights. The whole target is characterizcd by a group of the highlight in space.In this paper a general expression of the transfer function of the highlight is derived, which includes the amplitude factor, thc time delay and the phase jump. A determined parameter group provides a concrete target model.Simulation of the echo waveform can also be performed using the prescnted model.
文摘针对现有超宽带穿墙雷达时域波束成像分辨率低、旁瓣高以及干扰抑制能力弱等问题,提出利用稳健Capon波束形成对目标成像的方法。该方法基于目标回波模型首先补偿近场扩散损耗、墙体传播损耗和折射效应,实现天线阵列接收数据的配准,利用稳健Capon波束成像得到良好的成像分辨率和更好的干扰抑制能力。利用时域有限差分(finite-difference time domain,FDTD)数值仿真和实验数据实现了隐藏目标的二维成像,验证了该方法的有效性。