In imaging on moving target, it is easy to get space- variant blurred image. In order to recover the image and gain recognizable target, an approach to recover the space-variant blurred image is presented based on ima...In imaging on moving target, it is easy to get space- variant blurred image. In order to recover the image and gain recognizable target, an approach to recover the space-variant blurred image is presented based on image segmentation. Be- cause of motion blur's convolution process, the pixels of observed image's target and background will be displaced and piled up to produce two superposition regions. As a result, the neighbor- ing pixels in the superposition regions will have similar grey level change. According to the pixel's motion-blur character, the target's blurred edge of superposition region could be detected. Canny operator can be recurred to detect the target edge which parallels the motion blur direction. Then in the segmentation process, the whole target image which has the character of integral convolution between motion blur and real target image can be obtained. At last, the target image is restored by deconvolution algorithms with adding zeros. The restoration result indicates that the approach can effectively solve the kind of problem of space-variant motion blurred image restoration.展开更多
Bistatic SAR possesses characteristic of the azimuth space-variant when the velocities of transmitter and receiver are not equal. The geometric model of BiSAR with the parallel trajectories and the nonequal platform v...Bistatic SAR possesses characteristic of the azimuth space-variant when the velocities of transmitter and receiver are not equal. The geometric model of BiSAR with the parallel trajectories and the nonequal platform velocities is presented. Analyzing the motion relationship of transmitter and receiver, the formula of azimuth spacevariant is derived in time domain. Via Taylor polynomial expansions, the azimuth space-variant is factorized by four terms: zero-order, first-order, second-order, and third-order term. And, their impacts on impulse response are illuminated. Some characteristics about azimuth space-variant of airborne BiSAR case are exhibited by simulation experiments, and these simulated results are coincident with the formulae of azimuth space-variant.展开更多
The nonlinear characteristics of the motion trajectory of the synthetic aperture radar(SAR)flight platform can lead to severe two-dimensional space-variance characteristics of the signal,greatly affecting the imaging ...The nonlinear characteristics of the motion trajectory of the synthetic aperture radar(SAR)flight platform can lead to severe two-dimensional space-variance characteristics of the signal,greatly affecting the imaging quality,and are currently considered as one of the difficulties in the field of SAR imaging.This paper first discusses the nonlinear trajectory SAR model and its space-variance characteristics and then discusses algorithms such as scaling-based algorithms,interpolation-based algorithms,time-domain algorithms,and hybrid algorithms.The relative merits and applicability of each algorithm are analyzed.Finally,computer simulation and actual data validation are conducted.展开更多
High-frequency seismic data components can be seriously attenuated during seismic wave propagation in unconsolidated (low-velocity) layers, resulting in reduced seismic resolution and signal-to-noise (S/N) ratio. ...High-frequency seismic data components can be seriously attenuated during seismic wave propagation in unconsolidated (low-velocity) layers, resulting in reduced seismic resolution and signal-to-noise (S/N) ratio. In this paper, first, based on Wiener filter theory, inverse filter calculations for near-surface absorption attenuation compensation were accomplished by analysis of the direct wave spectral components from different distances near the surface. The direct waves were generated by detonators in uphole shots and were acquired by receivers on the surface. The spatially varying inverse filters were designed to compensate for the frequency attenuation of 3D pre-stack CRG (common receiver-gather) data. After applying the filter to CRG data, the high frequency components were compensated with the low frequencies maintained. The seismic resolution and S/N ratio are enhanced and match better with synthetic seismograms and better meet the needs of geological interpretation.展开更多
As sandstone layers in thin interbedded section are difficult to identify,conventional model-driven seismic inversion and data-driven seismic prediction methods have low precision in predicting them.To solve this prob...As sandstone layers in thin interbedded section are difficult to identify,conventional model-driven seismic inversion and data-driven seismic prediction methods have low precision in predicting them.To solve this problem,a model-data-driven seismic AVO(amplitude variation with offset)inversion method based on a space-variant objective function has been worked out.In this method,zero delay cross-correlation function and F norm are used to establish objective function.Based on inverse distance weighting theory,change of the objective function is controlled according to the location of the target CDP(common depth point),to change the constraint weights of training samples,initial low-frequency models,and seismic data on the inversion.Hence,the proposed method can get high resolution and high-accuracy velocity and density from inversion of small sample data,and is suitable for identifying thin interbedded sand bodies.Tests with thin interbedded geological models show that the proposed method has high inversion accuracy and resolution for small sample data,and can identify sandstone and mudstone layers of about one-30th of the dominant wavelength thick.Tests on the field data of Lishui sag show that the inversion results of the proposed method have small relative error with well-log data,and can identify thin interbedded sandstone layers of about one-15th of the dominant wavelength thick with small sample data.展开更多
An image super resolution reconstruction method was used to improve the spatial resolution of the thick pinhole imaging system and to mitigate the limitations of the image spatial resolution of the hardware of the ima...An image super resolution reconstruction method was used to improve the spatial resolution of the thick pinhole imaging system and to mitigate the limitations of the image spatial resolution of the hardware of the image diagnostic system. The thick pinhole is usually applied into the diagnostics of the high energy neutron radiation image. Due to the impacts among its energy flux, spatial resolution and effective field of view, in dealing with the large area radiation source, the spatial resolution of the thick pinhole neutron image cannot meet the requirements for high precision modeling of the radiation source image. In this paper, the Lucy-Richardson image super resolution reconstruction method was used to simulate the thick pinhole imaging and super resolution image reconstruction. And the spatial resolution of the image could be increased by over three times after the image super resolution reconstruction. Besides, in dealing with the pseudo-noise, plum blossom shape appeared in the image super resolution reconstruction. The analysis of the source of the pseudo-noise was made based on the simulation of the image reconstruction under various conditions according to the characteristics of the thick pinhole image configuration.展开更多
The traditional space-invariant isotropic kernel utilized by a bilateral filter(BF)frequently leads to blurry edges and gradient reversal artifacts due to tlie existence of a large amount of outliers in the local aver...The traditional space-invariant isotropic kernel utilized by a bilateral filter(BF)frequently leads to blurry edges and gradient reversal artifacts due to tlie existence of a large amount of outliers in the local averaging window.However,the efficient and accurate cstiinatioii of space-variant k(4rnels which adapt to image structures,and the fast realization of the corresponding space-variant bilateral filtering are challenging problems.To address these problems,we present a space-variant BF(SVBF).and its linear time and error-bounded acceleration method.First,we accurately estimate spacevariant,anisotropic kernels that vary with image structures in linear time through structure tensor and mininnini spanning tree.Second,we perform SVBF in linear time using two error-bounded approximation methods,namely,low-rank tensor approximation via higher-order singular value decomposition and exponential sum approximation.Tlierefore.the proposed SVBF can efficiently achieve good edge-preserving results.We validate the advantages of the proposed filter in applications including:image denoising,image enhancement,and image focus editing.Experimental results(leinonstrate that our fast and error-bounded SVBF is superior to state-of-the-art methods.展开更多
The ability to control magnetic vortex is critical for their potential applications in spintronic devices.Traditional methods including magnetic field,spin-polarized current etc.have been used to flip the core and/or ...The ability to control magnetic vortex is critical for their potential applications in spintronic devices.Traditional methods including magnetic field,spin-polarized current etc.have been used to flip the core and/or reverse circulation of vortex.However,it is challenging for deterministic electric-field control of the single magnetic vortex textures with time-reversal broken symmetry and no planar magnetic anisotropy.Here it is reported that a deterministic reversal of single magnetic vortex circulation can be driven back and forth by a space-varying strain in multiferroic heterostructures,which is controlled by using a bi-axial pulsed electric field.Phase-field simulation reveals the mechanism of the emerging magnetoelastic energy with the space variation and visualizes the reversal pathway of the vortex.This deterministic electric-field control of the single magnetic vortex textures demonstrates a new approach to integrate the low-dimensional spin texture into the magnetoelectric thin film devices with low energy consumption.展开更多
文摘In imaging on moving target, it is easy to get space- variant blurred image. In order to recover the image and gain recognizable target, an approach to recover the space-variant blurred image is presented based on image segmentation. Be- cause of motion blur's convolution process, the pixels of observed image's target and background will be displaced and piled up to produce two superposition regions. As a result, the neighbor- ing pixels in the superposition regions will have similar grey level change. According to the pixel's motion-blur character, the target's blurred edge of superposition region could be detected. Canny operator can be recurred to detect the target edge which parallels the motion blur direction. Then in the segmentation process, the whole target image which has the character of integral convolution between motion blur and real target image can be obtained. At last, the target image is restored by deconvolution algorithms with adding zeros. The restoration result indicates that the approach can effectively solve the kind of problem of space-variant motion blurred image restoration.
基金Sichuan Provincial Youth Science and Technology Foundation (06ZQ026-006)
文摘Bistatic SAR possesses characteristic of the azimuth space-variant when the velocities of transmitter and receiver are not equal. The geometric model of BiSAR with the parallel trajectories and the nonequal platform velocities is presented. Analyzing the motion relationship of transmitter and receiver, the formula of azimuth spacevariant is derived in time domain. Via Taylor polynomial expansions, the azimuth space-variant is factorized by four terms: zero-order, first-order, second-order, and third-order term. And, their impacts on impulse response are illuminated. Some characteristics about azimuth space-variant of airborne BiSAR case are exhibited by simulation experiments, and these simulated results are coincident with the formulae of azimuth space-variant.
基金supported in part by the National Natural Science Foundation of China(No.62271510)in part by Young Elite Scientists Sponsorship Program by CAST(No.2022QNRC001)+1 种基金in part by the Natural Science Foundation of Hunan Province(No.2021JJ40781)in part by the Open Fund of Laboratory of Pinghu.
文摘The nonlinear characteristics of the motion trajectory of the synthetic aperture radar(SAR)flight platform can lead to severe two-dimensional space-variance characteristics of the signal,greatly affecting the imaging quality,and are currently considered as one of the difficulties in the field of SAR imaging.This paper first discusses the nonlinear trajectory SAR model and its space-variance characteristics and then discusses algorithms such as scaling-based algorithms,interpolation-based algorithms,time-domain algorithms,and hybrid algorithms.The relative merits and applicability of each algorithm are analyzed.Finally,computer simulation and actual data validation are conducted.
基金supported by China Petroleum Technology Innovation Fund Project(Grant No.0610740122)
文摘High-frequency seismic data components can be seriously attenuated during seismic wave propagation in unconsolidated (low-velocity) layers, resulting in reduced seismic resolution and signal-to-noise (S/N) ratio. In this paper, first, based on Wiener filter theory, inverse filter calculations for near-surface absorption attenuation compensation were accomplished by analysis of the direct wave spectral components from different distances near the surface. The direct waves were generated by detonators in uphole shots and were acquired by receivers on the surface. The spatially varying inverse filters were designed to compensate for the frequency attenuation of 3D pre-stack CRG (common receiver-gather) data. After applying the filter to CRG data, the high frequency components were compensated with the low frequencies maintained. The seismic resolution and S/N ratio are enhanced and match better with synthetic seismograms and better meet the needs of geological interpretation.
文摘As sandstone layers in thin interbedded section are difficult to identify,conventional model-driven seismic inversion and data-driven seismic prediction methods have low precision in predicting them.To solve this problem,a model-data-driven seismic AVO(amplitude variation with offset)inversion method based on a space-variant objective function has been worked out.In this method,zero delay cross-correlation function and F norm are used to establish objective function.Based on inverse distance weighting theory,change of the objective function is controlled according to the location of the target CDP(common depth point),to change the constraint weights of training samples,initial low-frequency models,and seismic data on the inversion.Hence,the proposed method can get high resolution and high-accuracy velocity and density from inversion of small sample data,and is suitable for identifying thin interbedded sand bodies.Tests with thin interbedded geological models show that the proposed method has high inversion accuracy and resolution for small sample data,and can identify sandstone and mudstone layers of about one-30th of the dominant wavelength thick.Tests on the field data of Lishui sag show that the inversion results of the proposed method have small relative error with well-log data,and can identify thin interbedded sandstone layers of about one-15th of the dominant wavelength thick with small sample data.
文摘An image super resolution reconstruction method was used to improve the spatial resolution of the thick pinhole imaging system and to mitigate the limitations of the image spatial resolution of the hardware of the image diagnostic system. The thick pinhole is usually applied into the diagnostics of the high energy neutron radiation image. Due to the impacts among its energy flux, spatial resolution and effective field of view, in dealing with the large area radiation source, the spatial resolution of the thick pinhole neutron image cannot meet the requirements for high precision modeling of the radiation source image. In this paper, the Lucy-Richardson image super resolution reconstruction method was used to simulate the thick pinhole imaging and super resolution image reconstruction. And the spatial resolution of the image could be increased by over three times after the image super resolution reconstruction. Besides, in dealing with the pseudo-noise, plum blossom shape appeared in the image super resolution reconstruction. The analysis of the source of the pseudo-noise was made based on the simulation of the image reconstruction under various conditions according to the characteristics of the thick pinhole image configuration.
基金the National Natural Science Foundation of China under Grant Nos.61620106003.61701235,61772523,61471338 and 61571046the Beijing Natural Science Foundation of China under Grant,No.LI82059+1 种基金the Fundamental Research Funds for the Central Universities of China under Grant No.30917011323the Open Projects Program of National Laboratory of Pattern Recognition of China under Grant No.201900020.
文摘The traditional space-invariant isotropic kernel utilized by a bilateral filter(BF)frequently leads to blurry edges and gradient reversal artifacts due to tlie existence of a large amount of outliers in the local averaging window.However,the efficient and accurate cstiinatioii of space-variant k(4rnels which adapt to image structures,and the fast realization of the corresponding space-variant bilateral filtering are challenging problems.To address these problems,we present a space-variant BF(SVBF).and its linear time and error-bounded acceleration method.First,we accurately estimate spacevariant,anisotropic kernels that vary with image structures in linear time through structure tensor and mininnini spanning tree.Second,we perform SVBF in linear time using two error-bounded approximation methods,namely,low-rank tensor approximation via higher-order singular value decomposition and exponential sum approximation.Tlierefore.the proposed SVBF can efficiently achieve good edge-preserving results.We validate the advantages of the proposed filter in applications including:image denoising,image enhancement,and image focus editing.Experimental results(leinonstrate that our fast and error-bounded SVBF is superior to state-of-the-art methods.
基金supported by the National Key Research and Development Program of China(2016YFA0302300 and 2017YFA0206200)Basic Science Center Program of the National Natural Science Foundation of China(51788104)+5 种基金National Natural Science Foundation of China(11974052,51972028)Beijing Natural Science Foundation(Z190008)Chinese Academy of Sciences Interdisciplinary Innovation Teamfunded by the Director,Office of Science,Office of Basic Energy Sciences,Materials Science and Engineering Department of the US Department of Energy(DOE)in the Quantum Materials Program(KC2202)under Contract No.DEAC02-05CH11231the support by the Science Alliance Joint Directed Research&Development Programthe Transdisciplinary Academy Program at the University of Tennessee。
文摘The ability to control magnetic vortex is critical for their potential applications in spintronic devices.Traditional methods including magnetic field,spin-polarized current etc.have been used to flip the core and/or reverse circulation of vortex.However,it is challenging for deterministic electric-field control of the single magnetic vortex textures with time-reversal broken symmetry and no planar magnetic anisotropy.Here it is reported that a deterministic reversal of single magnetic vortex circulation can be driven back and forth by a space-varying strain in multiferroic heterostructures,which is controlled by using a bi-axial pulsed electric field.Phase-field simulation reveals the mechanism of the emerging magnetoelastic energy with the space variation and visualizes the reversal pathway of the vortex.This deterministic electric-field control of the single magnetic vortex textures demonstrates a new approach to integrate the low-dimensional spin texture into the magnetoelectric thin film devices with low energy consumption.