FSC (Fractionated Spacecraft Cluster) is a kind of loosely distributed space system which is comprised of multiple physically independent spacecrafts orbiting closely and interactively communicating via wireless net...FSC (Fractionated Spacecraft Cluster) is a kind of loosely distributed space system which is comprised of multiple physically independent spacecrafts orbiting closely and interactively communicating via wireless network. Spaceborne ad-hoc network, as the physical infrastructure for information exchanging, is one of the enabling technologies of FSC. The demonstration of FSC flying supported by ad-hoc network is worth for the sake of proving the rationality of FSC and seeking technological improvements. Considering this, a NNP (Network Node Prototype) for spaceborne ad-hoc network is developed in this paper, which transmits the information required by the FSC cooperation. Four NNPs are then built up and collaborated into a hardware-in-loop simulation system, in which a typical loose satellite cluster flying mission was performed. The simulation results showed that the NNPs can support the inter-satellite communication for satellite cluster flying.展开更多
This paper presents the development of circularly polarized microstrip antenna using Kevlar honeycomb core as the substrates for application of CP-SAR (circularly polarized synthetic aperture radar) which signal pro...This paper presents the development of circularly polarized microstrip antenna using Kevlar honeycomb core as the substrates for application of CP-SAR (circularly polarized synthetic aperture radar) which signal propagation is not affected by Faraday rotation effect in the ionosphere, as compared to linearly polarized systems especially at the L-band. The reason why Kevlar honeycomb core is used is because it is suitable for space environment in terms of lightweight and resistant to heat and shock. Measurements of the fabricated antenna were performed to confirm the simulation results. The results show good characteristics of the antennas except the axial ratio. The reason of insufficient axial ratio is assumed as fabrication error of the radiator and microstrip line.展开更多
文摘FSC (Fractionated Spacecraft Cluster) is a kind of loosely distributed space system which is comprised of multiple physically independent spacecrafts orbiting closely and interactively communicating via wireless network. Spaceborne ad-hoc network, as the physical infrastructure for information exchanging, is one of the enabling technologies of FSC. The demonstration of FSC flying supported by ad-hoc network is worth for the sake of proving the rationality of FSC and seeking technological improvements. Considering this, a NNP (Network Node Prototype) for spaceborne ad-hoc network is developed in this paper, which transmits the information required by the FSC cooperation. Four NNPs are then built up and collaborated into a hardware-in-loop simulation system, in which a typical loose satellite cluster flying mission was performed. The simulation results showed that the NNPs can support the inter-satellite communication for satellite cluster flying.
文摘This paper presents the development of circularly polarized microstrip antenna using Kevlar honeycomb core as the substrates for application of CP-SAR (circularly polarized synthetic aperture radar) which signal propagation is not affected by Faraday rotation effect in the ionosphere, as compared to linearly polarized systems especially at the L-band. The reason why Kevlar honeycomb core is used is because it is suitable for space environment in terms of lightweight and resistant to heat and shock. Measurements of the fabricated antenna were performed to confirm the simulation results. The results show good characteristics of the antennas except the axial ratio. The reason of insufficient axial ratio is assumed as fabrication error of the radiator and microstrip line.