Due to the low spatial resolution of sea surface temperature(T_S)retrieval by real aperture microwave radiometers,in this study,an iterative retrieval method that minimizes the differences between brightness temperatu...Due to the low spatial resolution of sea surface temperature(T_S)retrieval by real aperture microwave radiometers,in this study,an iterative retrieval method that minimizes the differences between brightness temperature(T_B)measured and modeled was used to retrieve sea surface temperature with a one-dimensional synthetic aperture microwave radiometer,temporarily named 1 D-SAMR.Regarding the configuration of the radiometer,an angular resolution of 0.43°was reached by theoretical calculation.Experiments on sea surface temperature retrieval were carried out with ideal parameters;the results show that the main factors affecting the retrieval accuracy of sea surface temperature are the accuracy of radiometer calibration and the precision of auxiliary geophysical parameters.In the case of no auxiliary parameter errors,the greatest error in retrieved sea surface temperature is obtained at low T_S scene(i.e.,0.7106 K for the incidence angle of 35°under the radiometer calibration accuracy of0.5 K).While errors on auxiliary parameters are assumed to follow a Gaussian distribution,the greatest error on retrieved sea surface temperature was 1.3305 K at an incidence angle of 65°in poorly known sea surface wind speed(W)(the error on W of 1.0 m/s)over high W scene,for the radiometer calibration accuracy of 0.5 K.展开更多
Compared with traditional real aperture microwave radiometers,one-dimensional synthetic aperture microwave radiometers have higher spatial resolution.In this paper,we proposed to retrieve sea surface temperature using...Compared with traditional real aperture microwave radiometers,one-dimensional synthetic aperture microwave radiometers have higher spatial resolution.In this paper,we proposed to retrieve sea surface temperature using a one-dimensional synthetic aperture microwave radiometer that operates at frequencies of 6.9 GHz,10.65 GHz,18.7 GHz and 23.8 GHz at multiple incidence angles.We used the ERA5 reanalysis data provided by the European Centre for Medium-Range Weather Forecasts and a radiation transmission forward model to calculate the model brightness temperature.The brightness temperature measured by the spaceborne one-dimensional synthetic aperture microwave radiometer was simulated by adding Gaussian noise to the model brightness temperature.Then,a backpropagation(BP)neural network algorithm,a random forest(RF)algorithm and two multiple linear regression algorithms(RE1 and RE2)were developed to retrieve sea surface temperature from the measured brightness temperature within the incidence angle range of 0°-65°.The results show that the retrieval errors of the four algorithms increase with the increasing Gaussian noise.The BP achieves the lowest retrieval errors at all incidence angles.The retrieval error of the RE1 and RE2 decrease first and then increase with the incidence angle and the retrieval error of the RF is contrary to that of RE1 and RE2.展开更多
One-dimensional synthetic aperture microwave radiometers have higher spatial resolution and record measurements at multiple incidence angles.In this paper,we propose a multiple linear regression method to retrieve sea...One-dimensional synthetic aperture microwave radiometers have higher spatial resolution and record measurements at multiple incidence angles.In this paper,we propose a multiple linear regression method to retrieve sea surface wind speed at an incidence angle between 0°65°.We assume that a one-dimensional synthetic aperture microwave radiometer operates at frequencies of 6.9,10.65,18.7,23.8 and 36.5 GHz.Then,the microwave radiative transfer forward model is used to simulate the measured brightness temperatures.The sensitivity of the brightness temperatures at 0°65°to the sea surface wind speed is calculated.Then,vertical polarization channels(VR),horizontal polarization channels(HR)and all channels(AR)are used to retrieve the sea surface wind speed via a multiple linear regression algorithm at 0°65°,and the relationship between the retrieval error and incidence angle is obtained.The results are as follows:(1)The sensitivity of the vertical polarization brightness temperature to the sea surface wind speed is smaller than that of the horizontal polarization.(2)The retrieval error increases with Gaussian noise.The retrieval error of VR first increases and then decreases with increasing incidence angle,the retrieval error of HR gradually decreases with increasing incidence angle,and the retrieval error of AR first decreases and then increases with increasing incidence angle.(3)The retrieval error of AR is the lowest and it is necessary to retrieve the sea surface wind speed at a larger incidence angle for AR.展开更多
The synthetic aperture microwave radiometer (SAMR) has been proved to be an interesting system for the remote sensing of the earth from space with a high spatial resolution. This paper presents the formulas for comput...The synthetic aperture microwave radiometer (SAMR) has been proved to be an interesting system for the remote sensing of the earth from space with a high spatial resolution. This paper presents the formulas for computing the spatial resolution of the SAMR. Some practical examples are also presented, and it is proved that the spatial resolution becomes more inferior with the increment of the off-nadir angle.展开更多
The development of microwave sensors in recent two years in China are in troduced with an emphasis on spaceborne sensors without the applications in cluded. The microwave sensors as the main payloads to be boarded on ...The development of microwave sensors in recent two years in China are in troduced with an emphasis on spaceborne sensors without the applications in cluded. The microwave sensors as the main payloads to be boarded on the future operational satellites, such as FY-3 meteorological satellites and HY-2 marine satellite are introduced with much in detail. Besides these, four new sensors are outlined, i.e. the imaging radar altimeter,synthetic aperture radiometer, and polarimetric radiometer. Two recently conducted flight experiment campaigns are also introduced with results shown.展开更多
基金The National Natural Science Foundation of China under contract Nos 41475019,41575028,41705007,41605016,and 41505016。
文摘Due to the low spatial resolution of sea surface temperature(T_S)retrieval by real aperture microwave radiometers,in this study,an iterative retrieval method that minimizes the differences between brightness temperature(T_B)measured and modeled was used to retrieve sea surface temperature with a one-dimensional synthetic aperture microwave radiometer,temporarily named 1 D-SAMR.Regarding the configuration of the radiometer,an angular resolution of 0.43°was reached by theoretical calculation.Experiments on sea surface temperature retrieval were carried out with ideal parameters;the results show that the main factors affecting the retrieval accuracy of sea surface temperature are the accuracy of radiometer calibration and the precision of auxiliary geophysical parameters.In the case of no auxiliary parameter errors,the greatest error in retrieved sea surface temperature is obtained at low T_S scene(i.e.,0.7106 K for the incidence angle of 35°under the radiometer calibration accuracy of0.5 K).While errors on auxiliary parameters are assumed to follow a Gaussian distribution,the greatest error on retrieved sea surface temperature was 1.3305 K at an incidence angle of 65°in poorly known sea surface wind speed(W)(the error on W of 1.0 m/s)over high W scene,for the radiometer calibration accuracy of 0.5 K.
基金The National Natural Science Foundation of China under contract Nos 41475019 and 41705007.
文摘Compared with traditional real aperture microwave radiometers,one-dimensional synthetic aperture microwave radiometers have higher spatial resolution.In this paper,we proposed to retrieve sea surface temperature using a one-dimensional synthetic aperture microwave radiometer that operates at frequencies of 6.9 GHz,10.65 GHz,18.7 GHz and 23.8 GHz at multiple incidence angles.We used the ERA5 reanalysis data provided by the European Centre for Medium-Range Weather Forecasts and a radiation transmission forward model to calculate the model brightness temperature.The brightness temperature measured by the spaceborne one-dimensional synthetic aperture microwave radiometer was simulated by adding Gaussian noise to the model brightness temperature.Then,a backpropagation(BP)neural network algorithm,a random forest(RF)algorithm and two multiple linear regression algorithms(RE1 and RE2)were developed to retrieve sea surface temperature from the measured brightness temperature within the incidence angle range of 0°-65°.The results show that the retrieval errors of the four algorithms increase with the increasing Gaussian noise.The BP achieves the lowest retrieval errors at all incidence angles.The retrieval error of the RE1 and RE2 decrease first and then increase with the incidence angle and the retrieval error of the RF is contrary to that of RE1 and RE2.
基金National Natural Science Foundation of China(41475019,41631072)
文摘One-dimensional synthetic aperture microwave radiometers have higher spatial resolution and record measurements at multiple incidence angles.In this paper,we propose a multiple linear regression method to retrieve sea surface wind speed at an incidence angle between 0°65°.We assume that a one-dimensional synthetic aperture microwave radiometer operates at frequencies of 6.9,10.65,18.7,23.8 and 36.5 GHz.Then,the microwave radiative transfer forward model is used to simulate the measured brightness temperatures.The sensitivity of the brightness temperatures at 0°65°to the sea surface wind speed is calculated.Then,vertical polarization channels(VR),horizontal polarization channels(HR)and all channels(AR)are used to retrieve the sea surface wind speed via a multiple linear regression algorithm at 0°65°,and the relationship between the retrieval error and incidence angle is obtained.The results are as follows:(1)The sensitivity of the vertical polarization brightness temperature to the sea surface wind speed is smaller than that of the horizontal polarization.(2)The retrieval error increases with Gaussian noise.The retrieval error of VR first increases and then decreases with increasing incidence angle,the retrieval error of HR gradually decreases with increasing incidence angle,and the retrieval error of AR first decreases and then increases with increasing incidence angle.(3)The retrieval error of AR is the lowest and it is necessary to retrieve the sea surface wind speed at a larger incidence angle for AR.
文摘The synthetic aperture microwave radiometer (SAMR) has been proved to be an interesting system for the remote sensing of the earth from space with a high spatial resolution. This paper presents the formulas for computing the spatial resolution of the SAMR. Some practical examples are also presented, and it is proved that the spatial resolution becomes more inferior with the increment of the off-nadir angle.
文摘The development of microwave sensors in recent two years in China are in troduced with an emphasis on spaceborne sensors without the applications in cluded. The microwave sensors as the main payloads to be boarded on the future operational satellites, such as FY-3 meteorological satellites and HY-2 marine satellite are introduced with much in detail. Besides these, four new sensors are outlined, i.e. the imaging radar altimeter,synthetic aperture radiometer, and polarimetric radiometer. Two recently conducted flight experiment campaigns are also introduced with results shown.