The identification of targets varies in different surge tests. A multi-color space threshold segmentation and self-learning k-nearest neighbor algorithm (k-NN) for equipment under test status identification was prop...The identification of targets varies in different surge tests. A multi-color space threshold segmentation and self-learning k-nearest neighbor algorithm (k-NN) for equipment under test status identification was proposed after using feature matching to identify equipment status had to train new patterns every time before testing. First, color space (L*a*b*, hue saturation lightness (HSL), hue saturation value (HSV)) to segment was selected according to the high luminance points ratio and white luminance points ratio of the image. Second, the unknown class sample Sr was classified by the k-NN algorithm with training set T~ according to the feature vector, which was formed from number ofpixels, eccentricity ratio, compact- ness ratio, and Euler's numbers. Last, while the classification confidence coefficient equaled k, made Sr as one sample ofpre-training set Tz'. The training set Tz increased to Tz+1 by Tz' if Tz' was saturated. In nine series of illuminant, indicator light, screen, and disturbances samples (a total of 21600 frames), the algorithm had a 98.65% identification accuracy, also selected five groups of samples to enlarge the training set from To to T5 by itself. Keywords multi-color space, k-nearest neighbor algorithm (k-NN), self-learning, surge test展开更多
文摘The identification of targets varies in different surge tests. A multi-color space threshold segmentation and self-learning k-nearest neighbor algorithm (k-NN) for equipment under test status identification was proposed after using feature matching to identify equipment status had to train new patterns every time before testing. First, color space (L*a*b*, hue saturation lightness (HSL), hue saturation value (HSV)) to segment was selected according to the high luminance points ratio and white luminance points ratio of the image. Second, the unknown class sample Sr was classified by the k-NN algorithm with training set T~ according to the feature vector, which was formed from number ofpixels, eccentricity ratio, compact- ness ratio, and Euler's numbers. Last, while the classification confidence coefficient equaled k, made Sr as one sample ofpre-training set Tz'. The training set Tz increased to Tz+1 by Tz' if Tz' was saturated. In nine series of illuminant, indicator light, screen, and disturbances samples (a total of 21600 frames), the algorithm had a 98.65% identification accuracy, also selected five groups of samples to enlarge the training set from To to T5 by itself. Keywords multi-color space, k-nearest neighbor algorithm (k-NN), self-learning, surge test