Spacer grids play an important role in pressurized water reactor(PWR) fuel assembly in that they have significant influence on the thermal-hydraulic characteristics of the reactor core.But so far,the numerical studi...Spacer grids play an important role in pressurized water reactor(PWR) fuel assembly in that they have significant influence on the thermal-hydraulic characteristics of the reactor core.But so far,the numerical studies are performed without regarding dimple and spring of spacer grids,just considering mixing vane.Moreover,these studies use k-ε turbulence model without considering the suitability of the other turbulence models upon the different spacer grids flow.A study is carried out to understand the 3-D single-phase flow in AFA-2G 5×5 rod bundles with spacer grids based on numerical method.In order to investigate the suitability of different turbulence models,k-ε model and k-ω model,the influence of different parts of spacer grid on the fluid flow is also predicted.By using second-order upwind scheme,hybrid grids technique,and improved SIMPLEC algorithm,the Reynolds averaged mass conservation and momentum conservation equations are solved,and the pressure and velocity field of flow are obtained.The numerical simulation results are compared with experiment results and the agreement is satisfactory.The simulation results show the influences of the spring,dimple and mixing vane,and the different characteristics of the k-ε model and k-ω model.Comparing with the experiment results,the simulation results suggest that the k-ω model is suitable for the simulation of the rod bundle flow with spacer grids;the spring and dimple are the main causes of the pressure loss in the spacer grid channel.The friction coefficient of the channel with spring and dimple is 1.5 times the coefficient of the channel with the vane.These results are beneficial to enhance the simulation ability of spacer grids flow and optimization design ability of spaces grid.展开更多
Flow development downstream of a spacer grid is dependent on the upstream conditions and the imposed interface topology, especially at inlet and outlet boundaries. In STAR-CCM+, all interfaces fall into two ...Flow development downstream of a spacer grid is dependent on the upstream conditions and the imposed interface topology, especially at inlet and outlet boundaries. In STAR-CCM+, all interfaces fall into two groups, direct and indirect. A direct interface directly joins together two boundaries composing the interface either permanently or temporarily, for the case of rigid body motion. An explicit connection is created between cells on each side of the interface, so that mass and energy or either of them will occur across the interface. Three options of interface topology namely, in-place, periodic and repeating are available to be imposed at the inlet-outlet boundaries for a flow problem. In the present work, computational fluid dynamic simulation using STAR-CCM+ was performed for the flow of water at a bundle’s Reynolds number of Re1 = 3.4 × 10<sup>4</sup> through a 5 × 5 rod bundle geometry supported by spacer grid with and without split mixing vanes for which the rod-to-rod pitch to diameter ratio was 1.33 and the rod to wall pitch to diameter ratio was 0.74. The two-layer k-epsilon turbulence model with an all y+ automatic wall treatment function in STAR-CCM+ was adopted for an isothermal single phase (water) flow through the geometry with and without imposed cyclic periodic interface boundary condition of fully developed flow type at inlet and outlet boundaries. The objectives were to primarily investigate the extent of predictability of the experimental data by the Computational Fluid Dynamic (CFD) simulation as a measure of reliability on the CFD code employed, and also study the effects of the imposed interface topology on flow redistribution in the presence and absence of split mixing vane. Validation of simulation results with experimental data showed a good correlation of mean flow parameters with experimental data. Generally, the agreement of simulation results with data obtained from the experimental investigation confirmed the suitability of the CFD code, STAR-CCM+ to analyze the physical problem considered. Trends of flow redistribution downstream of the spacer grid indicate that, the split mixing vanes acted to quickly bring the flow to an equitable redistribution downstream of the spacer grid irrespective of the imposed inlet-outlet interface topology. For the case of the spacer grid without mixing vanes, some extents of deviation were realized between the model with no imposed interface topology and that with imposed periodic interface topology. The variation in trends shows that, a much longer inlet segment of the domain is required to completely nullify the effect of the inlet-outlet interface topology on flow distribution in the absence of mixing vanes which may lead to a relatively higher demand for computational resources than required in the presence of mixing vanes.展开更多
The present work aims to evaluate the increase in the number of spot welds in the 16 × 16 type fuel assembly structure that connects guide thimbles and spacer grids, in order to provide a proper joint for this co...The present work aims to evaluate the increase in the number of spot welds in the 16 × 16 type fuel assembly structure that connects guide thimbles and spacer grids, in order to provide a proper joint for this connection. This new and improved process can provide more stiffness to the whole structure, since the number of spots raised from four to eight. A 3-D geometric model of a guide thimble section was generated in a CAD (computer aided design) program (SolidWorks). After that, the geometric model was imported to a CAE (computer aided engineering) program (ANSYS Mechanical APDL, Release 14.0), where the finite element model was built, considering the guide thimble geometry assembled with the spacer grid through the welded connections. Boundaries conditions were implemented in the model in order to simulate the correct physical behavior due to the operation of the fuel assembly inside the reactor. The analysis covered specific loads and displacements acting on the entire structure. The method used to solve this finite element analysis was a linear static simulation in order to perform the connection between a spacer grid cell and a guide thimble section. Hence, four models was evaluated, differing on the spot weld number in the spacer grid and guide thimble connection. The rotational stiffness results of each model were compared. The results acquired from four and eight spot weld were validated with physical test results. The behavior of the structure under the acting force/displacement and the related results of the analysis, mainly the stiffness, were satisfied. The results of this analysis were used to prove that the increasing spot welds number is an improvement in the dimensional stability when submitted to loads and displacements required on the fuel assembly design. This analysis aid to get more information of extreme importance such as, the pursuance to develop better manufacturing process and to improve the fuel assembly performance due to the increasing of the bum-up.展开更多
Experimental and numerical simulation were carried out on vertically upward air-water two-phase flow in the rod bundle with grid spacer. The related numerical simulation has been performed by using the Computational F...Experimental and numerical simulation were carried out on vertically upward air-water two-phase flow in the rod bundle with grid spacer. The related numerical simulation has been performed by using the Computational Fluid Dynamics code-CFX4.2, in which lateral interfacial effects based on a two-fluid model are accounted for. This model has been used to evaluate the velocity fields of gas and liquid phases, as well as phase distribution between elements in rod bundle by simulating 1/4 zone of experimental model, and mixing vanes of spacer in this area. Fur- thermore, this model has been used to predict the effects of spacer on flow and pressure drop along the rod bundle. The calculation results show that the mixing vane has significant influence on axial and lateral velocity. In order to obtain some experimental data to verify the numerical solutions, a series of tests, using a specially designed 3×3 rod bundle test section with AFA-2G structure spacer have been performed. An optical probe was used to measure local void fractions. At the same time, the pressure loss has been measured. A comparison between the calculated void pro- file and pressure loss and the measured results shows that the predicted void profiles are consistent at low gas appar- ent velocity. This research shows that the code CFX4.2 can be used to describe the 3-D air-water two-phase flow in the rod bundle channel with grid spacer.展开更多
基金supported by National Key Laboratory of Bubble Physics and Natural Circulation of China(Grant No. 51482040105CB0103)
文摘Spacer grids play an important role in pressurized water reactor(PWR) fuel assembly in that they have significant influence on the thermal-hydraulic characteristics of the reactor core.But so far,the numerical studies are performed without regarding dimple and spring of spacer grids,just considering mixing vane.Moreover,these studies use k-ε turbulence model without considering the suitability of the other turbulence models upon the different spacer grids flow.A study is carried out to understand the 3-D single-phase flow in AFA-2G 5×5 rod bundles with spacer grids based on numerical method.In order to investigate the suitability of different turbulence models,k-ε model and k-ω model,the influence of different parts of spacer grid on the fluid flow is also predicted.By using second-order upwind scheme,hybrid grids technique,and improved SIMPLEC algorithm,the Reynolds averaged mass conservation and momentum conservation equations are solved,and the pressure and velocity field of flow are obtained.The numerical simulation results are compared with experiment results and the agreement is satisfactory.The simulation results show the influences of the spring,dimple and mixing vane,and the different characteristics of the k-ε model and k-ω model.Comparing with the experiment results,the simulation results suggest that the k-ω model is suitable for the simulation of the rod bundle flow with spacer grids;the spring and dimple are the main causes of the pressure loss in the spacer grid channel.The friction coefficient of the channel with spring and dimple is 1.5 times the coefficient of the channel with the vane.These results are beneficial to enhance the simulation ability of spacer grids flow and optimization design ability of spaces grid.
文摘Flow development downstream of a spacer grid is dependent on the upstream conditions and the imposed interface topology, especially at inlet and outlet boundaries. In STAR-CCM+, all interfaces fall into two groups, direct and indirect. A direct interface directly joins together two boundaries composing the interface either permanently or temporarily, for the case of rigid body motion. An explicit connection is created between cells on each side of the interface, so that mass and energy or either of them will occur across the interface. Three options of interface topology namely, in-place, periodic and repeating are available to be imposed at the inlet-outlet boundaries for a flow problem. In the present work, computational fluid dynamic simulation using STAR-CCM+ was performed for the flow of water at a bundle’s Reynolds number of Re1 = 3.4 × 10<sup>4</sup> through a 5 × 5 rod bundle geometry supported by spacer grid with and without split mixing vanes for which the rod-to-rod pitch to diameter ratio was 1.33 and the rod to wall pitch to diameter ratio was 0.74. The two-layer k-epsilon turbulence model with an all y+ automatic wall treatment function in STAR-CCM+ was adopted for an isothermal single phase (water) flow through the geometry with and without imposed cyclic periodic interface boundary condition of fully developed flow type at inlet and outlet boundaries. The objectives were to primarily investigate the extent of predictability of the experimental data by the Computational Fluid Dynamic (CFD) simulation as a measure of reliability on the CFD code employed, and also study the effects of the imposed interface topology on flow redistribution in the presence and absence of split mixing vane. Validation of simulation results with experimental data showed a good correlation of mean flow parameters with experimental data. Generally, the agreement of simulation results with data obtained from the experimental investigation confirmed the suitability of the CFD code, STAR-CCM+ to analyze the physical problem considered. Trends of flow redistribution downstream of the spacer grid indicate that, the split mixing vanes acted to quickly bring the flow to an equitable redistribution downstream of the spacer grid irrespective of the imposed inlet-outlet interface topology. For the case of the spacer grid without mixing vanes, some extents of deviation were realized between the model with no imposed interface topology and that with imposed periodic interface topology. The variation in trends shows that, a much longer inlet segment of the domain is required to completely nullify the effect of the inlet-outlet interface topology on flow distribution in the absence of mixing vanes which may lead to a relatively higher demand for computational resources than required in the presence of mixing vanes.
文摘The present work aims to evaluate the increase in the number of spot welds in the 16 × 16 type fuel assembly structure that connects guide thimbles and spacer grids, in order to provide a proper joint for this connection. This new and improved process can provide more stiffness to the whole structure, since the number of spots raised from four to eight. A 3-D geometric model of a guide thimble section was generated in a CAD (computer aided design) program (SolidWorks). After that, the geometric model was imported to a CAE (computer aided engineering) program (ANSYS Mechanical APDL, Release 14.0), where the finite element model was built, considering the guide thimble geometry assembled with the spacer grid through the welded connections. Boundaries conditions were implemented in the model in order to simulate the correct physical behavior due to the operation of the fuel assembly inside the reactor. The analysis covered specific loads and displacements acting on the entire structure. The method used to solve this finite element analysis was a linear static simulation in order to perform the connection between a spacer grid cell and a guide thimble section. Hence, four models was evaluated, differing on the spot weld number in the spacer grid and guide thimble connection. The rotational stiffness results of each model were compared. The results acquired from four and eight spot weld were validated with physical test results. The behavior of the structure under the acting force/displacement and the related results of the analysis, mainly the stiffness, were satisfied. The results of this analysis were used to prove that the increasing spot welds number is an improvement in the dimensional stability when submitted to loads and displacements required on the fuel assembly design. This analysis aid to get more information of extreme importance such as, the pursuance to develop better manufacturing process and to improve the fuel assembly performance due to the increasing of the bum-up.
文摘Experimental and numerical simulation were carried out on vertically upward air-water two-phase flow in the rod bundle with grid spacer. The related numerical simulation has been performed by using the Computational Fluid Dynamics code-CFX4.2, in which lateral interfacial effects based on a two-fluid model are accounted for. This model has been used to evaluate the velocity fields of gas and liquid phases, as well as phase distribution between elements in rod bundle by simulating 1/4 zone of experimental model, and mixing vanes of spacer in this area. Fur- thermore, this model has been used to predict the effects of spacer on flow and pressure drop along the rod bundle. The calculation results show that the mixing vane has significant influence on axial and lateral velocity. In order to obtain some experimental data to verify the numerical solutions, a series of tests, using a specially designed 3×3 rod bundle test section with AFA-2G structure spacer have been performed. An optical probe was used to measure local void fractions. At the same time, the pressure loss has been measured. A comparison between the calculated void pro- file and pressure loss and the measured results shows that the predicted void profiles are consistent at low gas appar- ent velocity. This research shows that the code CFX4.2 can be used to describe the 3-D air-water two-phase flow in the rod bundle channel with grid spacer.