期刊文献+
共找到215篇文章
< 1 2 11 >
每页显示 20 50 100
Research of Anti-spam System Basing on Immunity Systemand Mobile Agent
1
作者 HUI Bei WU Yue +1 位作者 JI Lin CHEN Jia 《现代电子技术》 2007年第3期62-64,共3页
The human immune system has the function of selfdiscern.It can identify the non-self antigen and clear it through the immune response automatically.So,human body has the power of resisting disease.The anti-spam system... The human immune system has the function of selfdiscern.It can identify the non-self antigen and clear it through the immune response automatically.So,human body has the power of resisting disease.The anti-spam system basing on immune system is proposed by using immune system′s theory,and it is introduced in the mail service of enterprise VPN.Regard VPN as the human body,the mobile agent is simulated the antibody because of its movable and intelligent,and the spam is simulated the antigen.It can clear the spam by using immune mechanism.This method is a new thinking of anti-spam mail.The advantage is overcoming the weakness on independence of traditional antispam system. 展开更多
关键词 免疫系统 移动AGENT 免疫响应 虚拟网络 垃圾邮件
下载PDF
Efficient Spam Filtering System Based on Smart Cooperative Subjective and Objective Methods
2
作者 Samir A. Elsagheer Mohamed 《International Journal of Communications, Network and System Sciences》 2013年第2期88-99,共12页
Most of the spam filtering techniques are based on objective methods such as the content filtering and DNS/reverse DNS checks. Recently, some cooperative subjective spam filtering techniques are proposed. Objective me... Most of the spam filtering techniques are based on objective methods such as the content filtering and DNS/reverse DNS checks. Recently, some cooperative subjective spam filtering techniques are proposed. Objective methods suffer from the false positive and false negative classification. Objective methods based on the content filtering are time consuming and resource demanding. They are inaccurate and require continuous update to cope with newly invented spammer’s tricks. On the other side, the existing subjective proposals have some drawbacks like the attacks from malicious users that make them unreliable and the privacy. In this paper, we propose an efficient spam filtering system that is based on a smart cooperative subjective technique for content filtering in addition to the fastest and the most reliable non-content-based objective methods. The system combines several applications. The first is a web-based system that we have developed based on the proposed technique. A server application having extra features suitable for the enterprises and closed work groups is a second part of the system. Another part is a set of standard web services that allow any existing email server or email client to interact with the system. It allows the email servers to query the system for email filtering. They can also allow the users via the mail user agents to participate in the subjective spam filtering problem. 展开更多
关键词 ANTI-spam system Objective spam FILTERING Cooperative SUBJECTIVE spam FILTERING WEB Application WEB Services
下载PDF
A Heuristic Reputation Based System to Detect Spam Activities in a Social Networking Platform, HRSSSNP
3
作者 Manoj Rameshchandra Thakur Sugata Sanyal 《Social Networking》 2013年第1期42-45,共4页
The introduction of the social networking platform has drastically affected the way individuals interact. Even though most of the effects have been positive, there exist some serious threats associated with the intera... The introduction of the social networking platform has drastically affected the way individuals interact. Even though most of the effects have been positive, there exist some serious threats associated with the interactions on a social networking website. A considerable proportion of the crimes that occur are initiated through a social networking platform [1]. Almost 33% of the crimes on the internet are initiated through a social networking website [1]. Moreover activities like spam messages create unnecessary traffic and might affect the user base of a social networking platform. As a result preventing interactions with malicious intent and spam activities becomes crucial. This work attempts to detect the same in a social networking platform by considering a social network as a weighted graph wherein each node, which represents an individual in the social network, stores activities of other nodes with respect to itself in an optimized format which is referred to as localized data set. The weights associated with the edges in the graph represent the trust relationship between profiles. The weights of the edges along with the localized data set are used to infer whether nodes in the social network are compromised and are performing spam or malicious activities. 展开更多
关键词 spam Social GRAPH Collaborative Filtering Weighted GRAPH LOCALIZED Data-Set Trust Level
下载PDF
An Online Malicious Spam Email Detection System Using Resource Allocating Network with Locality Sensitive Hashing
4
作者 Siti-Hajar-Aminah Ali Seiichi Ozawa +2 位作者 Junji Nakazato Tao Ban Jumpei Shimamura 《Journal of Intelligent Learning Systems and Applications》 2015年第2期42-57,共16页
In this paper, we propose a new online system that can quickly detect malicious spam emails and adapt to the changes in the email contents and the Uniform Resource Locator (URL) links leading to malicious websites by ... In this paper, we propose a new online system that can quickly detect malicious spam emails and adapt to the changes in the email contents and the Uniform Resource Locator (URL) links leading to malicious websites by updating the system daily. We introduce an autonomous function for a server to generate training examples, in which double-bounce emails are automatically collected and their class labels are given by a crawler-type software to analyze the website maliciousness called SPIKE. In general, since spammers use botnets to spread numerous malicious emails within a short time, such distributed spam emails often have the same or similar contents. Therefore, it is not necessary for all spam emails to be learned. To adapt to new malicious campaigns quickly, only new types of spam emails should be selected for learning and this can be realized by introducing an active learning scheme into a classifier model. For this purpose, we adopt Resource Allocating Network with Locality Sensitive Hashing (RAN-LSH) as a classifier model with a data selection function. In RAN-LSH, the same or similar spam emails that have already been learned are quickly searched for a hash table in Locally Sensitive Hashing (LSH), in which the matched similar emails located in “well-learned” are discarded without being used as training data. To analyze email contents, we adopt the Bag of Words (BoW) approach and generate feature vectors whose attributes are transformed based on the normalized term frequency-inverse document frequency (TF-IDF). We use a data set of double-bounce spam emails collected at National Institute of Information and Communications Technology (NICT) in Japan from March 1st, 2013 until May 10th, 2013 to evaluate the performance of the proposed system. The results confirm that the proposed spam email detection system has capability of detecting with high detection rate. 展开更多
关键词 MALICIOUS spam EMAIL Detection system INCREMENTAL Learning Resource Allocating Network LOCALITY Sensitive HASHING
下载PDF
Preventing Cloud Network from Spamming Attacks Using Cloudflare and KNN
5
作者 Muhammad Nadeem Ali Arshad +4 位作者 Saman Riaz SyedaWajiha Zahra Muhammad Rashid Shahab S.Band Amir Mosavi 《Computers, Materials & Continua》 SCIE EI 2023年第2期2641-2659,共19页
Cloud computing is one of the most attractive and cost-saving models,which provides online services to end-users.Cloud computing allows the user to access data directly from any node.But nowadays,cloud security is one... Cloud computing is one of the most attractive and cost-saving models,which provides online services to end-users.Cloud computing allows the user to access data directly from any node.But nowadays,cloud security is one of the biggest issues that arise.Different types of malware are wreaking havoc on the clouds.Attacks on the cloud server are happening from both internal and external sides.This paper has developed a tool to prevent the cloud server from spamming attacks.When an attacker attempts to use different spamming techniques on a cloud server,the attacker will be intercepted through two effective techniques:Cloudflare and K-nearest neighbors(KNN)classification.Cloudflare will block those IP addresses that the attacker will use and prevent spamming attacks.However,the KNN classifiers will determine which area the spammer belongs to.At the end of the article,various prevention techniques for securing cloud servers will be discussed,a comparison will be made with different papers,a conclusion will be drawn based on different results. 展开更多
关键词 Intrusion prevention system spamMING KNN classification spam cyber security BOTNET
下载PDF
Automated Spam Review Detection Using Hybrid Deep Learning on Arabic Opinions
6
作者 IbrahimM.Alwayle Badriyya B.Al-onazi +5 位作者 Mohamed K.Nour Khaled M.Alalayah Khadija M.Alaidarous Ibrahim Abdulrab Ahmed Amal S.Mehanna Abdelwahed Motwakel 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期2947-2961,共15页
Online reviews regarding purchasing services or products offered are the main source of users’opinions.To gain fame or profit,generally,spam reviews are written to demote or promote certain targeted products or servi... Online reviews regarding purchasing services or products offered are the main source of users’opinions.To gain fame or profit,generally,spam reviews are written to demote or promote certain targeted products or services.This practice is called review spamming.During the last few years,various techniques have been recommended to solve the problem of spam reviews.Previous spam detection study focuses on English reviews,with a lesser interest in other languages.Spam review detection in Arabic online sources is an innovative topic despite the vast amount of data produced.Thus,this study develops an Automated Spam Review Detection using optimal Stacked Gated Recurrent Unit(SRD-OSGRU)on Arabic Opinion Text.The presented SRD-OSGRU model mainly intends to classify Arabic reviews into two classes:spam and truthful.Initially,the presented SRD-OSGRU model follows different levels of data preprocessing to convert the actual review data into a compatible format.Next,unigram and bigram feature extractors are utilized.The SGRU model is employed in this study to identify and classify Arabic spam reviews.Since the trial-and-error adjustment of hyperparameters is a tedious process,a white shark optimizer(WSO)is utilized,boosting the detection efficiency of the SGRU model.The experimental validation of the SRD-OSGRU model is assessed under two datasets,namely DOSC dataset.An extensive comparison study pointed out the enhanced performance of the SRD-OSGRU model over other recent approaches. 展开更多
关键词 Arabic text spam reviews machine learning deep learning white shark optimizer
下载PDF
利用SPAMS研究景谷县春季细颗粒物污染特征
7
作者 刘浪 梅红兵 +3 位作者 彭剑平 马思媛 王剑敏 刘军 《环境科学导刊》 2023年第2期62-66,共5页
2022年4月11日—4月25日期间,利用单颗粒气溶胶质谱仪(SPAMS)对景谷县城区春季大气细颗粒物化学成分和来源进行分析,并结合县城空气自动站监测PM_(2.5)质量浓度研究了该地区大气细颗粒物污染特征。结果显示,景谷县春季细颗粒物成分主要... 2022年4月11日—4月25日期间,利用单颗粒气溶胶质谱仪(SPAMS)对景谷县城区春季大气细颗粒物化学成分和来源进行分析,并结合县城空气自动站监测PM_(2.5)质量浓度研究了该地区大气细颗粒物污染特征。结果显示,景谷县春季细颗粒物成分主要为钾离子、硫酸盐、元素碳、硝酸盐、有机碳、氯离子;主要污染源为燃煤源、机动车尾气源、工业工艺源。监测期间捕捉到5个短时污染天气时段,此时燃煤源常为主要污染源;燃煤源占比峰值多出现在14:00—16:00,机动车尾气源白天占比高于夜间,工业工艺源占比峰值多出现在21:00—次日9:00。景谷县城区工业工艺源、生物质燃烧源、二次无机源占比随PM_(2.5)质量浓度升高而增大,餐饮源占比随PM_(2.5)质量浓度降低而增大。 展开更多
关键词 spamS 春季 细颗粒物 污染特征 景谷
下载PDF
Real-Time Spammers Detection Based on Metadata Features with Machine Learning
8
作者 Adnan Ali Jinlong Li +2 位作者 Huanhuan Chen Uzair Aslam Bhatti Asad Khan 《Intelligent Automation & Soft Computing》 2023年第12期241-258,共18页
Spammer detection is to identify and block malicious activities performing users.Such users should be identified and terminated from social media to keep the social media process organic and to maintain the integrity ... Spammer detection is to identify and block malicious activities performing users.Such users should be identified and terminated from social media to keep the social media process organic and to maintain the integrity of online social spaces.Previous research aimed to find spammers based on hybrid approaches of graph mining,posted content,and metadata,using small and manually labeled datasets.However,such hybrid approaches are unscalable,not robust,particular dataset dependent,and require numerous parameters,complex graphs,and natural language processing(NLP)resources to make decisions,which makes spammer detection impractical for real-time detection.For example,graph mining requires neighbors’information,posted content-based approaches require multiple tweets from user profiles,then NLP resources to make decisions that are not applicable in a real-time environment.To fill the gap,firstly,we propose a REal-time Metadata based Spammer detection(REMS)model based on only metadata features to identify spammers,which takes the least number of parameters and provides adequate results.REMS is a scalable and robust model that uses only 19 metadata features of Twitter users to induce 73.81%F1-Score classification accuracy using a balanced training dataset(50%spam and 50%genuine users).The 19 features are 8 original and 11 derived features from the original features of Twitter users,identified with extensive experiments and analysis.Secondly,we present the largest and most diverse dataset of published research,comprising 211 K spam users and 1 million genuine users.The diversity of the dataset can be measured as it comprises users who posted 2.1 million Tweets on seven topics(100 hashtags)from 6 different geographical locations.The REMS’s superior classification performance with multiple machine and deep learning methods indicates that only metadata features have the potential to identify spammers rather than focusing on volatile posted content and complex graph structures.Dataset and REMS’s codes are available on GitHub(www.github.com/mhadnanali/REMS). 展开更多
关键词 spam detection online social networks METADATA machine learning
下载PDF
Deep Neural Network Based Spam Email Classification Using Attention Mechanisms
9
作者 Md. Tofael Ahmed Mariam Akter +4 位作者 Md. Saifur Rahman Maqsudur Rahman Pintu Chandra Paul Miss. Nargis Parvin Almas Hossain Antar 《Journal of Intelligent Learning Systems and Applications》 2023年第4期144-164,共21页
Spam emails pose a threat to individuals. The proliferation of spam emails daily has rendered traditional machine learning and deep learning methods for screening them ineffective and inefficient. In our research, we ... Spam emails pose a threat to individuals. The proliferation of spam emails daily has rendered traditional machine learning and deep learning methods for screening them ineffective and inefficient. In our research, we employ deep neural networks like RNN, LSTM, and GRU, incorporating attention mechanisms such as Bahdanua, scaled dot product (SDP), and Luong scaled dot product self-attention for spam email filtering. We evaluate our approach on various datasets, including Trec spam, Enron spam emails, SMS spam collections, and the Ling spam dataset, which constitutes a substantial custom dataset. All these datasets are publicly available. For the Enron dataset, we attain an accuracy of 99.97% using LSTM with SDP self-attention. Our custom dataset exhibits the highest accuracy of 99.01% when employing GRU with SDP self-attention. The SMS spam collection dataset yields a peak accuracy of 99.61% with LSTM and SDP attention. Using the GRU (Gated Recurrent Unit) alongside Luong and SDP (Structured Self-Attention) attention mechanisms, the peak accuracy of 99.89% in the Ling spam dataset. For the Trec spam dataset, the most accurate results are achieved using Luong attention LSTM, with an accuracy rate of 99.01%. Our performance analyses consistently indicate that employing the scaled dot product attention mechanism in conjunction with gated recurrent neural networks (GRU) delivers the most effective results. In summary, our research underscores the efficacy of employing advanced deep learning techniques and attention mechanisms for spam email filtering, with remarkable accuracy across multiple datasets. This approach presents a promising solution to the ever-growing problem of spam emails. 展开更多
关键词 spam Email Attention Mechanism Deep Neural Network Bahdanua Attention Scale Dot Product
下载PDF
利用SPAMS构建石家庄市PM_(2.5)固定排放源成分谱库 被引量:23
10
作者 周静博 张涛 +3 位作者 李治国 路娜 王耀涛 靳伟 《河北工业科技》 CAS 2015年第5期443-450,共8页
依托单颗粒气溶胶质谱仪(SPAMS),选取石家庄市燃煤、工业工艺、固废焚烧等固定排放源的典型企业展开了PM2.5固定排放源谱库的建立工作。通过对选取的有代表性的源排放样品进行采集和分析,获取了各排放源颗粒物的典型质谱信息和粒径分... 依托单颗粒气溶胶质谱仪(SPAMS),选取石家庄市燃煤、工业工艺、固废焚烧等固定排放源的典型企业展开了PM2.5固定排放源谱库的建立工作。通过对选取的有代表性的源排放样品进行采集和分析,获取了各排放源颗粒物的典型质谱信息和粒径分布特征。结果显示,三类污染源排放的颗粒物粒径峰值基本出现在1.0~1.5μm处;电力、水泥、制药、生活垃圾和危险废物焚烧行业排放的颗粒物粒径分布较窄,在0~3.0μm,而钢铁和医疗废物焚烧行业排放的颗粒物粒径范围较宽,在0~6.0μm左右;燃煤源的特征组分为Cr、有机低聚物、有机物和ECOC;工业工艺源的特征组分为OC,Fe,Pb,CaO,硅酸盐,有机胺;固废焚烧源的特征组分为元素碳、Pb、有机胺、Na,NaCl。该研究建立的石家庄市PM2.5固定排放源谱库,为石家庄市大气中PM2.5的在线来源解析提供了有效准确的识别依据。 展开更多
关键词 大气污染防治工程 排放源 spamS 谱库 PM2.5 石家庄市
下载PDF
利用SPAMS初探盘锦市冬季PM2.5污染特征及来源 被引量:8
11
作者 邰姗姗 仇伟光 +3 位作者 张青新 祖彪 陈宗娇 王德羿 《中国环境监测》 CAS CSCD 北大核心 2017年第3期147-153,共7页
利用SPAMS 0515于2015年1月在盘锦市兴隆台空气质量自动监测点位采集PM2.5样品,并分析其污染特征和来源。研究结果表明,盘锦市冬季PM2.5的颗粒类型主要以OC颗粒、富钾颗粒、EC颗粒组成。其中,OC颗粒占比最高,为52.5%;PM2.5污染的主要贡... 利用SPAMS 0515于2015年1月在盘锦市兴隆台空气质量自动监测点位采集PM2.5样品,并分析其污染特征和来源。研究结果表明,盘锦市冬季PM2.5的颗粒类型主要以OC颗粒、富钾颗粒、EC颗粒组成。其中,OC颗粒占比最高,为52.5%;PM2.5污染的主要贡献源为燃煤、生物质燃烧、机动车尾气排放,占比分别为33.2%、25.7%、17.5%,特别是在PM2.5质量浓度较高时段,燃煤和机动车尾气排放对污染的贡献较大。 展开更多
关键词 细颗粒物 spamS 污染特征 来源 盘锦市
下载PDF
一种随机嵌入抗SPAM检测的可逆数据隐藏算法 被引量:5
12
作者 柳玲 陈同孝 +1 位作者 曹晨 陈玉明 《计算机应用研究》 CSCD 北大核心 2013年第7期2111-2114,共4页
针对数据隐藏算法在携带信息时容易被检测工具SPAM侦测出来这一现象,将随机嵌入和直方图修正技术应用到数据隐藏中,提出一种随机嵌入抗SPAM检测的可逆数据隐藏算法。该方法通过对采样子图与参照子图间的差值直方图进行平移空位来嵌入信... 针对数据隐藏算法在携带信息时容易被检测工具SPAM侦测出来这一现象,将随机嵌入和直方图修正技术应用到数据隐藏中,提出一种随机嵌入抗SPAM检测的可逆数据隐藏算法。该方法通过对采样子图与参照子图间的差值直方图进行平移空位来嵌入信息。在信息嵌入过程中,用随机函数产生的伪随机序列来标志待隐藏信息的位置,使嵌入的信息分布更不规律,从而更好地逃脱检测工具SPAM的侦测。实验结果表明,相比Kim算法,该算法抗SPAM检测的安全性更好,更适合进行信息传递。 展开更多
关键词 随机嵌入 spam 可逆数据隐藏 直方图修正 子图采样
下载PDF
Co-Training——内容和链接的Web Spam检测方法 被引量:4
13
作者 魏小娟 李翠平 陈红 《计算机科学与探索》 CSCD 2010年第10期899-908,共10页
Web spam是指通过内容作弊和网页间链接作弊来欺骗搜索引擎,从而提升自身搜索排名的作弊网页,它干扰了搜索结果的准确性和相关性。提出基于Co-Training模型的Web spam检测方法,使用了网页的两组相互独立的特征——基于内容的统计特征和... Web spam是指通过内容作弊和网页间链接作弊来欺骗搜索引擎,从而提升自身搜索排名的作弊网页,它干扰了搜索结果的准确性和相关性。提出基于Co-Training模型的Web spam检测方法,使用了网页的两组相互独立的特征——基于内容的统计特征和基于网络图的链接特征,分别建立两个独立的基本分类器;使用Co-Training半监督式学习算法,借助大量未标记数据来改善分类器质量。在WEB SPAM-UK2007数据集上的实验证明:算法改善了SVM分类器的效果。 展开更多
关键词 WEB spam检测方法 内容作弊 链接作弊 Co—Training算法
下载PDF
SPAMS打击率影响因素与仪器状态分析 被引量:2
14
作者 王莉华 刘保献 +3 位作者 张大伟 张人太 安欣欣 魏强 《质谱学报》 EI CAS CSCD 北大核心 2018年第1期36-45,共10页
在北京市环境保护监测中心空气质量综合观测实验室,使用气溶胶单颗粒飞行时间质谱(SPAMS)对2013年1~12月空气颗粒物开展综合观测。实验结果表明,SPAMS打击率与测径颗粒数(siz)、大气相对湿度、颗粒物组分以及粒径有关。仪器状态正常时,... 在北京市环境保护监测中心空气质量综合观测实验室,使用气溶胶单颗粒飞行时间质谱(SPAMS)对2013年1~12月空气颗粒物开展综合观测。实验结果表明,SPAMS打击率与测径颗粒数(siz)、大气相对湿度、颗粒物组分以及粒径有关。仪器状态正常时,打击率在siz数量小、大气相对湿度低时较高,与含K^+、HSO_4^-、OCEC、NO_3^-的颗粒物以及粒径为0.2~0.3μm、0.3~0.4μm、0.4~0.5μm的颗粒物数量呈正相关,与0.1~0.2μm、0.5~0.6μm、0.6~0.7μm的颗粒物数量呈负相关,含NH_4^+、SiO_3^-颗粒物数量的关系与污染特征及其他环境有关。本研究通过分析打击率数值及打击率与各影响因素的关系判断仪器状态是否正常,这为提前发现常规方法难以发现的仪器故障提供了一种思路。 展开更多
关键词 PM25 单颗粒气溶胶飞行时间质谱(spamS) 打击率 仪器故障
下载PDF
在线社交网络中Spam相册检测方案 被引量:1
15
作者 吕少卿 张玉清 +1 位作者 刘东航 张光华 《通信学报》 EI CSCD 北大核心 2016年第9期82-91,共10页
提出一种针对Spam相册的检测方案。首先分析了Photo Spam的攻击特点以及与传统Spam的差异,在此基础上构造了12个提取及时且计算高效的特征。利用这些特征提出了有监督学习的检测模型,通过2 356个相册的训练形成Spam相册分类器,实验表明... 提出一种针对Spam相册的检测方案。首先分析了Photo Spam的攻击特点以及与传统Spam的差异,在此基础上构造了12个提取及时且计算高效的特征。利用这些特征提出了有监督学习的检测模型,通过2 356个相册的训练形成Spam相册分类器,实验表明能够正确检测到测试集中100%的Spam相册和98.2%的正常相册。最后将训练后的模型应用到包含315 115个相册的真实数据集中,检测到89 163个Spam相册,正确率达到97.2%。 展开更多
关键词 社交网络安全 PHOTO spam spam检测 人人网
下载PDF
小鼠精子透明质酸酶SPAM1在受精过程中的功能研究 被引量:1
16
作者 周崇 黄莉 +2 位作者 石德顺 蒋建荣 马场忠 《畜牧兽医学报》 CAS CSCD 北大核心 2017年第4期652-659,共8页
旨在研究小鼠精子透明质酸酶SPAM1(Sperm adhesion molecule 1)对受精过程中精子/卵丘互作的影响,并初步探讨其可能的作用机制。本研究抽提小鼠尾尖基因组,利用PCR法检测小鼠Spam基因型;筛选的野生型(WT)和Spam1敲除(KO)小鼠,提取附睾... 旨在研究小鼠精子透明质酸酶SPAM1(Sperm adhesion molecule 1)对受精过程中精子/卵丘互作的影响,并初步探讨其可能的作用机制。本研究抽提小鼠尾尖基因组,利用PCR法检测小鼠Spam基因型;筛选的野生型(WT)和Spam1敲除(KO)小鼠,提取附睾尾部精子蛋白进行Western blot和酶活性检测;经TYH培养液2h获能后,分别对精子的运动性、穿透和分散卵丘细胞能力及体外受精(IVF)进行统计分析。结果表明,KO小鼠精子中未检测到SPAM1蛋白,透明质酸酶活性也极显著低于WT小鼠(P<0.01);而获能后精子运动性,在KO和WT小鼠之间差异不显著(P>0.05);与WT相比,KO小鼠精子缺失Spam1后,极显著地影响卵丘细胞层基质中精子顶体反应的发生比率(P<0.01),导致精子穿透卵丘细胞层的能力极显著降低(P<0.01),仅有少数精子能够到达卵子透明带表面,大量精子极易黏附于卵丘细胞层表面或外部边缘(P<0.01);此外,KO小鼠精子IVF 2h的卵丘细胞分散和受精率均呈现显著延迟(P<0.05)。综上表明,小鼠精子透明质酸酶SPAM1与顶体反应相关联并影响精子/卵丘互作。揭示SPAM1在穿卵过程中除了具有降解透明质酸的作用外,还存在其他的非酶活性功能。 展开更多
关键词 spam1 精子/卵丘互作 顶体反应 精子 小鼠
下载PDF
利用单颗粒气溶胶质谱仪(SPAMS)研究太原市冬季一次雾霾天气的污染特征及成因 被引量:17
17
作者 冯新宇 《环境化学》 CAS CSCD 北大核心 2019年第1期177-185,共9页
2017年11月5日至6日太原市发生了一次重度污染天气,利用单颗粒气溶胶质谱仪(SPAMS)分析了细颗粒物的化学组成,根据太原市细颗粒源谱库对主要成分进行了来源解析,并结合激光雷达和气象条件研究了雾霾天气成因.结果表明,雾霾天时颗粒物主... 2017年11月5日至6日太原市发生了一次重度污染天气,利用单颗粒气溶胶质谱仪(SPAMS)分析了细颗粒物的化学组成,根据太原市细颗粒源谱库对主要成分进行了来源解析,并结合激光雷达和气象条件研究了雾霾天气成因.结果表明,雾霾天时颗粒物主要包括如下9类:有机碳颗粒(OC)、元素碳颗粒(EC)、元素-有机碳混合颗粒(ECOC)、高分子有机碳(HOC)颗粒、富钾颗粒(K-rich)、富钠颗粒(Na-rich)、左旋葡聚糖颗粒、矿物质颗粒及重金属颗粒,9类颗粒中普遍存在的二次成分表明它们都经历了一定程度的老化过程.含碳颗粒物(OC、EC)与二次颗粒物(SO2-4、NO-3、NH+4)的相关性在干净天时高于雾霾天,二次颗粒物的相关性在两种天气状况下都较高.污染物来源解析结果表明,此次重污染过程主要是由机动车尾气和燃煤引起的.激光雷达及气象数据分析表明,此次污染过程是由外来污染物传输以及风速低、湿度高、大气边界层高度降低等不利的气象条件共同作用造成的. 展开更多
关键词 单颗粒气溶胶质谱仪(spamS) 细颗粒物 污染特征 源解析 雾霾 太原
下载PDF
Web Spam技术研究综述 被引量:3
18
作者 蒋涛 张彬 《情报探索》 2007年第7期66-68,共3页
讨论了Spam的基本概念和影响,详细分析了当前各种Spamming技术,包括Term Spaming、Link Spamming和隐藏技术三种类型,这对于开发恰当的反击措施是非常有用的。
关键词 WEB spamming链接分析PageRank HITS
下载PDF
Web Spam技术研究综述(英文) 被引量:1
19
作者 张彬 蒋涛 徐雨明 《衡阳师范学院学报》 2008年第6期131-136,共6页
Web spamming是指故意误导搜索引擎的行为,它使得一些页面的排序值比它的应有值更高。最近几年,随着webspam的急剧增加,使得搜索引擎的搜索结果也降低了一些等级。文章首先讨论了Spam的基本概念和影响,然后详细地分析了当前的各种Spamm... Web spamming是指故意误导搜索引擎的行为,它使得一些页面的排序值比它的应有值更高。最近几年,随着webspam的急剧增加,使得搜索引擎的搜索结果也降低了一些等级。文章首先讨论了Spam的基本概念和影响,然后详细地分析了当前的各种Spamming技术,包括termspaming、link spamming和隐藏技术三种类型。我们相信本文的分析对于开发恰当的反措施是非常有用的。 展开更多
关键词 Web spamMING 链接分析 PAGE RANK HITS
下载PDF
反Spam页面技术研究 被引量:1
20
作者 蒋涛 张彬 眭仁武 《衡阳师范学院学报》 2007年第3期93-96,共4页
Spam页面可能极大地恶化诸如PageRank的基于排序的搜索算法。如何识别并抑制Spam页面已经成为一个很重要的问题。本文针对这个问题详细的分析了各种侦测和移除Spam页面的算法或方法,主要包括通用的方法、反面的方法和其它针对具体情形... Spam页面可能极大地恶化诸如PageRank的基于排序的搜索算法。如何识别并抑制Spam页面已经成为一个很重要的问题。本文针对这个问题详细的分析了各种侦测和移除Spam页面的算法或方法,主要包括通用的方法、反面的方法和其它针对具体情形的方法三种类型。最后,文章对识别spam页面的关键技术及其前景进行了分析、展望。 展开更多
关键词 PAGERANK 链接分析 spam
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部