期刊文献+
共找到1,355篇文章
< 1 2 68 >
每页显示 20 50 100
Spark Plasma Sintering of Mg-based Alloys:Microstructure,Mechanical Properties,Corrosion Behavior,and Tribological Performance 被引量:1
1
作者 Alessandro M.Ralls Mohammadreza Daroonparvar Pradeep L.Menezes 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期405-442,共38页
Within the past ten years,spark plasma sintering(SPS)has become an increasingly popular process for Mg manufacturing.In the SPS process,interparticle diffusion of compressed particles is rapidly achieved due to the co... Within the past ten years,spark plasma sintering(SPS)has become an increasingly popular process for Mg manufacturing.In the SPS process,interparticle diffusion of compressed particles is rapidly achieved due to the concept of Joule heating.Compared to traditional and additive manufacturing(AM)techniques,SPS gives unique control of the structural and microstructural features of Mg components.By doing so,their mechanical,tribological,and corrosion properties can be tailored.Although great advancements in this field have been made,these pieces of knowledge are scattered and have not been contextualized into a single work.The motivation of this work is to address this scientific gap and to provide a groundwork for understanding the basics of SPS manufacturing for Mg.To do so,the existing body of SPS Mg literature was first surveyed,with a focus on their structural formation and degradation mechanisms.It was found that successful Mg SPS fabrication highly depended on the processing temperature,particle size,and particle crystallinity.The addition of metal and ceramic composites also affected their microstructural features due to the Zener pinning effect.In degradative environments,their performance depends on their structural features and whether they have secondary phased composites.In industrial applications,SPS'd Mg was found to have great potential in biomedical,hydrogen storage,battery,automotive,and recycling sectors.The prospects to advance the field include using Mg as a doping agent for crystallite size refinement and using bulk metallic Mg-based glass powders for amorphous SPS components.Despite these findings,the interactions of multi-composites on the processing-structure-property relationships of SPS Mg is not well understood.In total,this work will provide a useful direction in the SPS field and serve as a milestone for future Mg-based SPS manufacturing. 展开更多
关键词 spark plasma sintering Magnesium alloys NANOCRYSTALLINE TRIBOLOGY Mechanical properties Corrosion
下载PDF
Effects of Diamond on the Mechanical Properties and Thermal Conductivity of Si_(3)N_(4)Composites Fabricated Using Spark Plasma Sintering
2
作者 GAO Ying LIU Di +6 位作者 WANG Aiyang ZHANG Song HE Qianglong REN Shifeng FANG Jie WANG Zihan WANG Weimin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1319-1324,共6页
Micrometer-sized diamonds were incorporated into silicon nitride(Si_(3)N_(4))matrix to manufacture high-performance Si_(3)N_(4)-based composites using spark plasma sintering at 1500℃under 50 MPa.The effects of the di... Micrometer-sized diamonds were incorporated into silicon nitride(Si_(3)N_(4))matrix to manufacture high-performance Si_(3)N_(4)-based composites using spark plasma sintering at 1500℃under 50 MPa.The effects of the diamond content on the phase composition,microstructure,mechanical properties and thermal conductivity of the composites were investigated.The results showed that the addition of diamond could effectively improve the hardness of the material.The thermal conductivity of Si_(3)N_(4)increased to 52.97 W/m·k at the maximum with the addition of 15 wt%diamond,which was 27.5%higher than that of the monolithic Si_(3)N_(4).At this point,the fracture toughness was 7.54 MPa·m^(1/2).Due to the addition of diamond,the composite material generated a new substance,MgSiN2,which effectively combined Si_(3)N_(4)with diamond.MgSiN2 might improve the hardness and thermal conductivity of the materials. 展开更多
关键词 spark plasma sintering Si_(3)N_(4) DIAMOND thermal conductivity mechanical properties
下载PDF
Fabrication of YAG:Ce^(3+) and YAG:Ce^(3+),Sc^(3+) Phosphors by Spark Plasma Sintering Technique
3
作者 周卫新 娄朝刚 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期255-260,共6页
In this study,a single-doped phosphors yttrium aluminum garnet(Y_(3)Al_(5)O_(12),YAG):Ce^(3+),single-doped YAG:Sc^(3+),and double-doped phosphors YAG:Ce^(3+),Sc^(3+) were prepared by spark plasma sintering(SPS)(lower ... In this study,a single-doped phosphors yttrium aluminum garnet(Y_(3)Al_(5)O_(12),YAG):Ce^(3+),single-doped YAG:Sc^(3+),and double-doped phosphors YAG:Ce^(3+),Sc^(3+) were prepared by spark plasma sintering(SPS)(lower than 1 200℃).The characteristics of synthesized phosphors were determined using scanning electron microscopy(SEM),X-ray diffraction(XRD),and fluorescence spectroscopy.During SPS,the lattice structure of YAG was maintained by the added Ce^(3+) and Sc^(3+).The emission wavelength of YAG:Ce^(3+) prepared from SPS(425-700 nm) was wider compared to that of YAG:Ce^(3+) prepared from high-temperature solid-state reaction(HSSR)(500-700 nm).The incorporation of low-dose Sc^(3+) in YAG:Ce^(3+) moved the emission peak towards the short wavelength. 展开更多
关键词 high-temperature solid-state reaction spark plasma sintering yttrium aluminum garnet PHOSPHORS
下载PDF
Spark plasma sintering of tungsten-based WTaVCr refractory high entropy alloys for nuclear fusion applications
4
作者 Yongchul Yoo Xiang Zhang +4 位作者 Fei Wang Xin Chen Xing-Zhong Li Michael Nastasi Bai Cui 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期146-154,共9页
W-based WTaVCr refractory high entropy alloys (RHEA) may be novel and promising candidate materials for plasma facing components in the first wall and diverter in fusion reactors. This alloy has been developed by a po... W-based WTaVCr refractory high entropy alloys (RHEA) may be novel and promising candidate materials for plasma facing components in the first wall and diverter in fusion reactors. This alloy has been developed by a powder metallurgy process combining mechanical alloying and spark plasma sintering (SPS). The SPSed samples contained two phases, in which the matrix is RHEA with a body-centered cubic structure, while the oxide phase was most likely Ta2VO6through a combined analysis of X-ray diffraction (XRD),energy-dispersive spectroscopy (EDS), and selected area electron diffraction (SAED). The higher oxygen affinity of Ta and V may explain the preferential formation of their oxide phases based on thermodynamic calculations. Electron backscatter diffraction (EBSD) revealed an average grain size of 6.2μm. WTaVCr RHEA showed a peak compressive strength of 2997 MPa at room temperature and much higher micro-and nano-hardness than W and other W-based RHEAs in the literature. Their high Rockwell hardness can be retained to at least 1000°C. 展开更多
关键词 refractory high entropy alloy plasma-facing material fusion reactor spark plasma sintering
下载PDF
Influences of oxide content and sintering temperature on microstructures and mechanical properties of intragranular-oxide strengthened iron alloys prepared by spark plasma sintering
5
作者 Deyin Zhang Xu Hao +4 位作者 Baorui Jia Haoyang Wu Lin Zhang Mingli Qin Xuanhui Qu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第9期1748-1755,共8页
How to increase strength without sacrificing ductility has been developed as a key goal in the manufacture of high-performance metals or alloys. Herein, the double-nanophase intragranular yttrium oxide dispersion stre... How to increase strength without sacrificing ductility has been developed as a key goal in the manufacture of high-performance metals or alloys. Herein, the double-nanophase intragranular yttrium oxide dispersion strengthened iron alloy with high strength and appreciable ductility was fabricated by solution combustion route and subsequent spark plasma sintering, and the influences of yttrium oxide content and sintering temperature on microstructures and mechanical properties were investigated. The results show at the same sintering temperature,with the increase of yttrium oxide content, the relative density of the sintered alloy decreases and the strength increases. For Fe–2wt%Y_(2)O_(3)alloy, as the sintering temperature increases gradually, the compressive strength decreases, while the strain-to-failure increases. The Fe–2wt%Y_(2)O_(3)alloy with 15.5 nm Y_(2)O_(3)particles uniformly distributed into the 147.5 nm iron grain interior sintered at 650℃ presents a high ultimate compressive strength of 1.86 GPa and large strain-to-failure of 29%. The grain boundary strengthening and intragranular second-phase particle dispersion strengthening are the main dominant mechanisms to enhance the mechanical properties of the alloy. 展开更多
关键词 oxide dispersion strengthening spark plasma sintering microstructure and properties strengthening mechanism
下载PDF
Properties and microstructure of Cu/diamond composites prepared by spark plasma sintering method 被引量:11
6
作者 陶静梅 朱心昆 +2 位作者 田维维 杨鹏 杨浩 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第10期3210-3214,共5页
Cu/diamond composites have been considered as the next generation of thermal management material for electronic packages and heat sinks applications. Cu/diamond composites with different volume fractions of diamond we... Cu/diamond composites have been considered as the next generation of thermal management material for electronic packages and heat sinks applications. Cu/diamond composites with different volume fractions of diamond were successfully prepared by spark plasma sintering(SPS) method. The sintering temperatures and volume fractions(50%, 60% and 70%) of diamond were changed to investigate their effects on the relative density, homogeneity of the microstructure and thermal conductivity of the composites. The results show that the relative density, homogeneity of the microstructure and thermal conductivity of the composites increase with decreasing the diamond volume fraction; the relative density and thermal conductivity of the composites increase with increasing the sintering temperature. The thermal conductivity of the composites is a result of the combined effect of the volume fraction of diamond, the homogeneity and relative density of the composites. 展开更多
关键词 Cu/diamond composites spark plasma sintering relative density thermal conductivity
下载PDF
Microstructure and fracture toughness of a TiAl-Nb composite consolidated by spark plasma sintering 被引量:5
7
作者 杨鑫 奚正平 +3 位作者 刘咏 汤慧萍 胡可 贾文鹏 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第11期2628-2632,共5页
A TiAl-Nb composite was prepared by spark plasma sintering (SPS) at 1250 °C and 50 MPa for 5 min from prealloyed TiAl powder and elemental Nb powder in a molar ratio of 9:1 for improving the fracture toughness... A TiAl-Nb composite was prepared by spark plasma sintering (SPS) at 1250 °C and 50 MPa for 5 min from prealloyed TiAl powder and elemental Nb powder in a molar ratio of 9:1 for improving the fracture toughness of TiAl alloy at room temperature. The microstructure, phase constitute, fracture surface and fracture toughness were determined by X-ray diffractometry, electron probe micro-analysis, scanning and transmission electron microscopy and mechanical testing. The results show that the sintered samples mainly consist of γ phase, O phase, niobium solid solution (Nbss) phase and B2 phase. The fracture toughness is as high as 28.7 MPa?m1/2 at room temperature. The ductile Nbss phase plays an important role in absorbing the fracture energy in front of the cracks. Moreover, B2 phase can branch the propagation of the cracks. The microhardness of each phase of the composite was also tested. 展开更多
关键词 TiAl-Nb composite FRACTURE spark plasma sintering (SPS) powder metallurgy fracture toughness fracture energy crack propagation
下载PDF
Microstructure and magnetic properties of anisotropic Nd-Fe-B magnets prepared by spark plasma sintering and hot deformation 被引量:3
8
作者 李小强 李力 +3 位作者 胡可 陈志成 屈盛官 杨超 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第10期3142-3151,共10页
Bulk anisotropic Nd-Fe-B magnets were prepared from hydrogen-disproportionation-desorption-recombination(HDDR) powders via spark plasma sintering(SPS) and subsequent hot deformation. The influence of sintering tem... Bulk anisotropic Nd-Fe-B magnets were prepared from hydrogen-disproportionation-desorption-recombination(HDDR) powders via spark plasma sintering(SPS) and subsequent hot deformation. The influence of sintering temperature on the structure and magnetic properties of the spark plasma sintered Nd-Fe-B magnets were studied. The remanence Br, intrinsic coercivity Hcj, and the maximum energy product(BH)max, of sintered Nd-Fe-B magnets first increase and then decrease with the increase of sintering temperature, TSPS, from 650 °C to 900 °C. The optimal magnetic properties can be obtained when TSPS is 800 °C. The Nd-Fe-B magnet sinter treated at 800 °C was subjected to further hot deformation. Compared with the starting HDDR powders or the SPS treated magnets, the hot-deformed magnets present more obvious anisotropy and possess much better magnetic properties due to the good c-axis texture formed in the deformation process. The anisotropic magnet deformed at 800 °C with 50% compression ratio has a microstructure consisting of well aligned and platelet-shaped Nd2Fe14 B grains without abnormal grain growth and exhibits excellent magnetic properties parallel to the pressing axis. 展开更多
关键词 Nd-Fe-B magnet hydrogen-disproportionation-desorption-recombination(HDDR) spark plasma sintering hot deformation magnetic property
下载PDF
Microstructure and mechanical properties of TiAl-based alloy prepared by double mechanical milling and spark plasma sintering 被引量:3
9
作者 肖树龙 徐丽娟 +1 位作者 陈玉勇 于宏宝 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第5期1086-1091,共6页
A fine-grained TiAl alloy with a composition of Ti-45Al-2Cr-2Nb-1B-0.5Ta-0.225Y (mole fraction, %) was prepared by double mechanical milling(DMM) and spark plasma sintering(SPS). The relationship among sintering... A fine-grained TiAl alloy with a composition of Ti-45Al-2Cr-2Nb-1B-0.5Ta-0.225Y (mole fraction, %) was prepared by double mechanical milling(DMM) and spark plasma sintering(SPS). The relationship among sintering temperature, microstructure and mechanical properties was studied. The results show that the morphology of double mechanical milled powder is regular with size in the range of 20-40 μm and mainly composed of TiAl and Ti3Al phases. The main phase TiAl and few phases Ti3Al, Ti2Al and TiB2 were observed in the SPSed alloys. For samples sintered at 900 ℃ the equiaxed crystal grain microstructure is achieved with size in the range of 100-200 nm. With increasing the SPS temperature from 900 ℃to 1000 ℃ the size of equiaxed crystal grain obviously increases, the microhardness decreases from HV658 to HV616, and the bending strength decreases from 781 MPa to 652 MPa. In the meantime, the compression fracture strength also decreases from 2769 MPa to 2669 MPa, and the strain to fracture in compression increases from 11.69% to 17.76%. On the base of analysis of fractographies, it shows that the compression fracture transform of the SPSed alloys is intergranular rupture. 展开更多
关键词 TiAl-based alloys mechanical alloying spark plasma sintering MICROSTRUCTURE mechanical properties
下载PDF
Microstructure and mechanical properties of Ti-43Al-9V alloy fabricated by spark plasma sintering 被引量:2
10
作者 徐丽娟 肖树龙 +1 位作者 陈玉勇 王娟 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第4期768-772,共5页
A fine-grained TiAl alloy with the composition of Ti-43Al-9V was prepared by mechanical milling and spark plasma sintering(SPS).The relationship among sintering temperature,microstructure and mechanical properties w... A fine-grained TiAl alloy with the composition of Ti-43Al-9V was prepared by mechanical milling and spark plasma sintering(SPS).The relationship among sintering temperature,microstructure and mechanical properties was studied.The results show that the morphology of mechanical milling powder is regular with size in a range of 5-30 μm.Main phases of γ-TiAl,α2-Ti3Al and few B2 phase are observed in the SPS bulk samples.For samples sintered at 1150 °C,equiaxed crystal grain microstructure is achieved with size in a range of 300 nm-1 μm.With increasing SPS temperature to 1250 °C,the size of equiaxed crystal grains obviously increases,the microhardness decreases from HV592 to HV535,and the bending strength decreases from 605 to 219 MPa.Meantime,the compression fracture strength also decreases from 2601 to 1905 MPa,and the strain compression decreases from 28.95% to 12.09%. 展开更多
关键词 TiAl alloy mechanical alloying spark plasma sintering MICROSTRUCTURE mechanical properties
下载PDF
Fe_(75)Zr_3Si_(13)B_9 magnetic materials prepared by spark plasma sintering 被引量:2
11
作者 王兴华 王葛 +3 位作者 朱玉英 鲍金峰 杜雄飞 李强 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第3期712-717,共6页
Fe75Zr3Si13B9 magnetic amorphous powders were fabricated by mechanical alloying. Bulk amorphous and nanocrystalline alloys with 20 mm in diameter and 7 mm in height were fabricated by the spark plasma sintering techno... Fe75Zr3Si13B9 magnetic amorphous powders were fabricated by mechanical alloying. Bulk amorphous and nanocrystalline alloys with 20 mm in diameter and 7 mm in height were fabricated by the spark plasma sintering technology at different sintering temperatures. The phase composition, glass transition temperature (Tg), onset crystallization temperature (Tx), peak temperature (Tp) and super-cooled liquid region (ΔTx) of Fe75Zr3Si13B9 amorphous powders were analyzed by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The phase transition, microstructure, mechanical properties and magnetic performance of the bulk alloys were discussed with X-ray diffractometer, scanning electron microscope (SEM), Gleeble 3500 and vibration sample magnetometer (VSM), respectively. It is found that with the increase in the sintering temperature at the pressure of 500 MPa, the density, compressive strength, micro-hardness and saturation magnetization of the sintering samples improved significantly, the amorphous phase began to crystallize gradually. Finally, the desirable amorphous and nanocrystalline magnetic materials at the sintering temperature of 863.15 K and the pressure of 500 MPa have a density of 6.9325 g/cm3, a compressive strength of 1140.28 MPa and a saturation magnetization of 1.28 T. 展开更多
关键词 mechanical alloying amorphous and nanocrystalline alloys saturation magnetization spark plasma sintering
下载PDF
Effect of spark plasma sintering temperature on microstructure and mechanical properties of melt-spun TiAl alloys 被引量:1
12
作者 柴丽华 陈玉勇 +1 位作者 张来启 林均品 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第3期528-533,共6页
A TiAl alloy from pulverized rapidly solidified ribbons with the composition of Ti-46Al-2Cr-4Nb-0.3Y(mole fraction,%) was processed by spark plasma sintering(SPS).The effects of sintering temperature on the micros... A TiAl alloy from pulverized rapidly solidified ribbons with the composition of Ti-46Al-2Cr-4Nb-0.3Y(mole fraction,%) was processed by spark plasma sintering(SPS).The effects of sintering temperature on the microstructure and mechanical properties were studied.The results show that the microstructure and phase constitution vary with sintering temperature.Sintering the milled powders at 1200 ℃ produces fully dense compact.Higher sintering temperature does not improve the densification evidently.The dominant phases are γ and α2 in the bulk alloys sintered at 1200 ℃.With higher sintering temperature,the fraction of α2 phase decreases and the microstructure changes from equiaxed near γ grain to near lamellar structure,together with a slight coarsening.The bulk alloy sintered at 1260 ℃ with refined and homogeneous near lamellar structure reveals the best overall mechanical properties.The compressional fracture stress and compression ratio are 2984 MPa and 41.5%,respectively,at room temperature.The tensile fracture stress and ductility are 527.5 MPa and 5.9%,respectively,at 800 ℃. 展开更多
关键词 TiAl alloy rapid solidification spark plasma sintering MICROSTRUCTURE mechanical properties
下载PDF
Bimodal-grained Ti fabricated by high-energy ball milling and spark plasma sintering
13
作者 龙雁 郭文晶 李颖 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第4期1170-1175,共6页
Bimodal-grained Ti containing coarse and fine grains was fabricated by high-energy ball milling and spark plasma sintering (SPS). The microstructure and mechanical properties of the compacts sintered by Ti powders bal... Bimodal-grained Ti containing coarse and fine grains was fabricated by high-energy ball milling and spark plasma sintering (SPS). The microstructure and mechanical properties of the compacts sintered by Ti powders ball-milled for different time were studied. Experimental results indicated that when the ball-milling time increased, the microstructure of sintered Ti was firstly changed from coarse-grained to bimodal-grained structure, subsequently transformed to a homogeneous fine-grained structure. Compared with coarse-grained Ti and fine-grained Ti, bimodal-grained Ti exhibited balanced strength and ductility. The sample sintered from Ti powders ball-milled for 10 h consisting of 65.3% (volume fraction) fine-grained region (average grain size 1 μm) and 34.7% coarse-grained region (grain size > 5 μm) exhibited a compress strength of 1028 MPa as well as a plastic strain to failure of 22%. 展开更多
关键词 titanium alloy high-energy ball milling spark plasma sintering bimodal-grained structure
下载PDF
Microstructural aspects of in-situ TiB reinforced Ti-6Al-4V composite processed by spark plasma sintering 被引量:4
14
作者 Saeid GHESMATI TABRIZI Abolfazl BABAKHANI +1 位作者 Seyed Abdolkarim SAJJADI 吕维洁 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第5期1460-1467,共8页
Titanium-matrix composites have important and wide applications in the transport and aerospace industries. The current research was focused on powder metallurgy processing of in-situ reinforced titanium-matrix composi... Titanium-matrix composites have important and wide applications in the transport and aerospace industries. The current research was focused on powder metallurgy processing of in-situ reinforced titanium-matrix composite with Ti B whiskers. The Ti-6Al-4V alloy and B4 C additive powders were used as raw materials. Two different consolidation techniques, namely press-and-sintering and spark plasma sintering, were selected. It was observed that in-situ Ti B whiskers were formed during sintering in both methods. The changes in size, aspect ratio and distribution of in-situ whiskers in different composite samples were monitored. The effect of spark plasma sintering temperature on the synthesis of in-situ whiskers was also investigated. Based on the microstructural observations(optical microscopy and scanning electron microscopy) and the energy dispersive spectroscopy analysis, it was concluded that increasing the spark plasma sintering temperature from 900 to 1100 °C would lead to the complete formation of in-situ Ti B whiskers and reduced porosity content. 展开更多
关键词 Ti-6Al-4V metal matrix composite TiB whisker in-situ reaction spark plasma sintering
下载PDF
Effects of silver powder particle size on the microstructure and properties of Ag-Yb_2O_3 electrical contact materials prepared by spark plasma sintering 被引量:6
15
作者 CHEN Xiaohua,JIA Chengchang,and LIU Xiangbing School of Materials Science and Engineering,University of Science and Technology Beijing,Beijing 100083,China 《Rare Metals》 SCIE EI CAS CSCD 2010年第4期366-370,共5页
mg-Yb203 electrical contact materials were fabricated by spark plasma sintefing (SPS). The effects of silver powder particle size on the microstructure and properties of the samples were investigated. The surface mo... mg-Yb203 electrical contact materials were fabricated by spark plasma sintefing (SPS). The effects of silver powder particle size on the microstructure and properties of the samples were investigated. The surface morphologies of the sintered samples were examined by optical microscope (OM), and the fracture morphologies were observed by scanning electron microscopy (SEM). The physical and mechanical properties such as density, electrical resistivity, microhardness, and tensile strength were also tested. The results show that the silver powder particle size has evident effects on the sintered materials. Comparing with coarse silver powder (5 ktm), homogeneous and fme microstmcture was obtained by fine silver powder (_〈0.5-1am). At the same time, the electrical conductivity, microhardness, and tensile strength of the sin- tered samples with fine silver powder were higher than those of the samples with coarse silver powder. However, silver powder particle size has little influence on the relative densities, which of all samples (both by free and coarse silver powders) is more than 95%. The fracture characteristics are ductile. 展开更多
关键词 COMPOSITES electrical contact materials spark plasma sintering particle size microstructure physical properties mechanical properties
下载PDF
Spark plasma sintering on mechanically activated W-Cu powders 被引量:7
16
作者 JIAChengchang LIZhigang HEYuntao QUXuanhui 《Rare Metals》 SCIE EI CAS CSCD 2004年第3期269-273,共5页
Mechanically activated W-Cu powders were sintered by a spark plasma sinteringsystem (SPS) in order to develop a new process and improve the properties of the alloy. Propertiessuch as density and hardness were measured... Mechanically activated W-Cu powders were sintered by a spark plasma sinteringsystem (SPS) in order to develop a new process and improve the properties of the alloy. Propertiessuch as density and hardness were measured. The microstructures of the sintered W-Cu alloy sampleswere observed by SEM (scanning electron microscope). The results show that spark plasma sinteringcan obviously lower the sintering temperature and increase the density of the alloy. This processcan also improve the hardness of the alloy. SPS is an effective method to obtain W-Cu powders withhigh density and superior physical properties. 展开更多
关键词 powder metallurgy W-Cu alloy spark plasma sintering mechanical activation
下载PDF
Sintering of WC-Co powder with nanocrystalline WC by spark plasma sintering 被引量:7
17
作者 WANG Xingqing XIE Yingfang +2 位作者 GUO Hailiang O.Van der Biest J.Vleugels 《Rare Metals》 SCIE EI CAS CSCD 2006年第3期246-252,共7页
A 92WC-8Co powder mixture with 33 nm WC grains was prepared by strengthening ball milling and was then sintered by spark plasma sintering (SPS) at 1000-1200℃ for 5-18 rain under 10-25 kN, respectively. Movement of ... A 92WC-8Co powder mixture with 33 nm WC grains was prepared by strengthening ball milling and was then sintered by spark plasma sintering (SPS) at 1000-1200℃ for 5-18 rain under 10-25 kN, respectively. Movement of the position of low punch shown shrinkage of the sintered body began above 800℃. The shrinkage slowly rose as the temperature rose from 800 to 1000℃ and then quickly rose at above 1000℃ and then gradually rose at above 1150℃. The densities of the samples increased with an increase in sintering temperature, rapidly below 1100℃, and then gradually above 1100℃. WC grains grow gradually with increasing sintering temperature. The powder was sintered to near full density at 1100℃ for 5 rain under 10 kN. The best result of the sample with 275 nm WC grains and no pores was obtained at 1150℃ under 10 kN for 5 rain. The research found the graphite die had a function of carburization, which could compensate the sintered body for the lack of carbon, and had the normal microstructure. 展开更多
关键词 nanocrystalline cemented carbide spark plasma sintering low temperature sintering strengthening ball milling
下载PDF
Preparation of multi-walled carbon nanotube-reinforced TiNi matrix composites from elemental powders by spark plasma sintering 被引量:7
18
作者 CAI Wei,FENG Xue,and SUI Jiehe National Key Laboratory Precision Hot Processing of Metals,School of Materials Science and Engineering,Harbin Institute of Technology,Harbin 150001,China 《Rare Metals》 SCIE EI CAS CSCD 2012年第1期48-50,共3页
Carbon nanotube (CNT)-reinforced TiNi matrix composites were synthesized by spark plasma sintering (SPS) employing elemental powders.The phase structure,morphology and transformation behaviors were studied.It was foun... Carbon nanotube (CNT)-reinforced TiNi matrix composites were synthesized by spark plasma sintering (SPS) employing elemental powders.The phase structure,morphology and transformation behaviors were studied.It was found that thermoelastic martensitic transformation be-haviors could be observed from the samples sintered above 800 ℃ even with a short sintering time (5min),and the transformation tempera-tures gradually increased with increasing sintering temperature because of more Ti-rich TiNi phase formation.Although decreasing the sin-tering temperature and time to 700 ℃ and 5min could not protect defective MWCNTs from reacting with Ti,still-perfect MWCNTs re-mained in the specimens sintered at 900 ℃.This method is expected to supply a basis for preparing CNT-reinforced TiNi composites. 展开更多
关键词 metallic composites shape memory materials carbon nanotubes spark plasma sintering
下载PDF
Process optimization,microstructures and mechanical/thermal properties of Cu/Invar bi-metal matrix composites fabricated by spark plasma sintering 被引量:8
19
作者 Qiang-qiang NIE Guo-hong CHEN +2 位作者 Bing WANG Lei YANG Wen-ming TANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第10期3050-3062,共13页
An orthogonal experiment scheme was designed to investigate the effects of the Cu content,compaction pressure,and sintering temperature on the microstructures and mechanical and thermal properties of(30−50)wt.%Cu/Inva... An orthogonal experiment scheme was designed to investigate the effects of the Cu content,compaction pressure,and sintering temperature on the microstructures and mechanical and thermal properties of(30−50)wt.%Cu/Invar bi-metal matrix composites fabricated via spark plasma sintering(SPS).The results indicated that as the Cu content increased from 30 to 50 wt.%,a continuous Cu network gradually appeared,and the density,thermal conductivity(TC)and coefficient of thermal expansion of the composites noticeably increased,but the tensile strength decreased.The increase in the sintering temperature promoted the Cu/Invar interface diffusion,leading to a reduction in the TC but an enhancement in the tensile strength of the composites.The compaction pressure comprehensively affected the thermal properties of the composites.The 50wt.%Cu/Invar composite sintered at 700℃ and 60 MPa had the highest TC(90.7 W/(m·K)),which was significantly higher than the TCs obtained for most of the previously reported Cu/Invar composites. 展开更多
关键词 spark plasma sintering(SPS) Cu/Invar bi-metal composite microstructure interface diffusion mechanical property thermal property
下载PDF
Effect of processing parameters on the microstructure and thermal conductivity of diamond/Ag composites fabricated by spark plasma sintering 被引量:6
20
作者 GAO Wenjia,JIA Chengchang,JIA Xian,LIANG Xuebing,CHU Ke,ZHANG Luman,HUANG Hai,and LIU Meng School of Materials Science and Engineering,University of Science and Technology Beijing,Beijing 100083,China 《Rare Metals》 SCIE EI CAS CSCD 2010年第6期625-629,共5页
Diamond/metal composites with 50 vol.% diamond have been produced by spark plasma sintering(SPS) using pure Ag as a matrix and diamond particles as reinforcement.Three kinds of powder mixing processes were used to p... Diamond/metal composites with 50 vol.% diamond have been produced by spark plasma sintering(SPS) using pure Ag as a matrix and diamond particles as reinforcement.Three kinds of powder mixing processes were used to prepare the mixture of diamond/Ag powders:dry mixing without milling medium,wet mixing and magnetic blending.Subsequently,they were all consolidated by SPS at various processing parameters to produce bulk diamond/Ag composites.Then samples were heat treated in order to obtain a higher thermal conductivity.The effect of processing parameters on the morphologies of the mixed powders,the microstructure and the thermal conductivity of the composites were investigated by comparing the experimental data.It reveals that particles were easy to agglomerate and the distribution of mixed powders was inhomogeneous by dry mixing method,and wet mixing method is too complex.The most favorable mixing process is magnetic blending by which the powders can be homogenously mixed and the composites prepared by optimized SPS processing parameters can obtain the highest relative density and the best thermal conductivity among the composites prepared by different processes.The magnetic blending diamond/Ag composites even have a 23% increase in thermal conductivity compared with pure silver sintered by SPS. 展开更多
关键词 metal matrix composites powder mixing spark plasma sintering thermal conductivity
下载PDF
上一页 1 2 68 下一页 到第
使用帮助 返回顶部