期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Simulation of Spark Source Wavelet Under Multibubble Motion
1
作者 WEI Jia YANG Huiliang +1 位作者 FENG Jing LI Yang 《Journal of Ocean University of China》 SCIE CAS CSCD 2021年第1期67-74,共8页
Marine spark sources are widely used in high-resolution marine seismic surveys.The characteristic of a wavelet is a critical part in seismic exploration;thus,the formation and numerical simulation of spark source wave... Marine spark sources are widely used in high-resolution marine seismic surveys.The characteristic of a wavelet is a critical part in seismic exploration;thus,the formation and numerical simulation of spark source wavelets should be explored.In studies on spark source excitation,the acoustic field generated by the interaction between bubbles constitutes the near-field wavelet of a source.Therefore,this interaction should be revealed by studying complex multibubble motion laws.In this study,actual discharge conditions were combined to derive the multibubble equation of motion.Energy conservation,ideal gas equation,and environmental factors in the discharge of spark source wavelets were studied,and the simulation method of an ocean spark source wavelet was established.The accuracy of the simulation calculation method was verified through a comparison of indoor-measured signals using three electrodes and the spark source wavelet obtained in the field.Results revealed that the accuracy of the model is related to the number of electrodes.The fewer the number of electrodes used,the lower will be the model's accuracy.This finding is attributed to the statistical hypothesis factor introduced to eliminate the coupling term of the interaction of the multibubble motion equation.This study presents a method for analyzing the wavelet characteristics of an indoor-simulated spark source wavelet. 展开更多
关键词 spark source wavelet simulation multibubble motion statistical hypothesis factor
下载PDF
Data processing of the Kuiyang-ST2000 deep-towed high-resolution multichannel seismic system and application to South China Sea data
2
作者 Yanliang PEI Mingming WEN +3 位作者 Zhengrong WEI Baohua LIU Kai LIU Guangming KAN 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第2期644-659,共16页
The Kuiyang-ST2000 deep-towed high-resolution multichannel seismic system was designed by the First Institute of Oceanography,Ministry of Natural Resources(FIO,MNR).The system is mainly composed of a plasma spark sour... The Kuiyang-ST2000 deep-towed high-resolution multichannel seismic system was designed by the First Institute of Oceanography,Ministry of Natural Resources(FIO,MNR).The system is mainly composed of a plasma spark source(source level:216 dB,main frequency:750 Hz,frequency bandwidth:150-1200 Hz)and a towed hydrophone streamer with 48 channels.Because the source and the towed hydrophone streamer are constantly moving according to the towing configuration,the accurate positioning of the towing hydrophone array and the moveout correction of deep-towed multichannel seismic data processing before imaging are challenging.Initially,according to the characteristics of the system and the towing streamer shape in deep water,travel-time positioning method was used to construct the hydrophone streamer shape,and the results were corrected by using the polynomial curve fitting method.Then,a new data-processing workflow for Kuiyang-ST2000 system data was introduced,mainly including float datum setting,residual static correction,phase-based moveout correction,which allows the imaging algorithms of conventional marine seismic data processing to extend to deep-towed seismic data.We successfully applied the Kuiyang-ST2000 system and methodology of data processing to a gas hydrate survey of the Qiongdongnan and Shenhu areas in the South China Sea,and the results show that the profile has very high vertical and lateral resolutions(0.5 m and 8 m,respectively),which can provide full and accurate details of gas hydrate-related and geohazard sedimentary and structural features in the South China Sea. 展开更多
关键词 Kuiyang-ST2000 system deep-towed system seismic data process plasma spark source high resolution gas hydrate South China Sea
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部