期刊文献+
共找到12,058篇文章
< 1 2 250 >
每页显示 20 50 100
Enhancing Evolutionary Algorithms With Pattern Mining for Sparse Large-Scale Multi-Objective Optimization Problems
1
作者 Sheng Qi Rui Wang +3 位作者 Tao Zhang Weixiong Huang Fan Yu Ling Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第8期1786-1801,共16页
Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to tr... Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges. 展开更多
关键词 Evolutionary algorithms pattern mining sparse large-scale multi-objective problems(SLMOPs) sparse large-scale optimization.
下载PDF
A Two-Layer Encoding Learning Swarm Optimizer Based on Frequent Itemsets for Sparse Large-Scale Multi-Objective Optimization 被引量:1
2
作者 Sheng Qi Rui Wang +3 位作者 Tao Zhang Xu Yang Ruiqing Sun Ling Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1342-1357,共16页
Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.... Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.As a result,many algorithms use a two-layer encoding approach to optimize binary variable Mask and real variable Dec separately.Nevertheless,existing optimizers often focus on locating non-zero variable posi-tions to optimize the binary variables Mask.However,approxi-mating the sparse distribution of real Pareto optimal solutions does not necessarily mean that the objective function is optimized.In data mining,it is common to mine frequent itemsets appear-ing together in a dataset to reveal the correlation between data.Inspired by this,we propose a novel two-layer encoding learning swarm optimizer based on frequent itemsets(TELSO)to address these SLMOPs.TELSO mined the frequent terms of multiple particles with better target values to find mask combinations that can obtain better objective values for fast convergence.Experi-mental results on five real-world problems and eight benchmark sets demonstrate that TELSO outperforms existing state-of-the-art sparse large-scale multi-objective evolutionary algorithms(SLMOEAs)in terms of performance and convergence speed. 展开更多
关键词 Evolutionary algorithms learning swarm optimiza-tion sparse large-scale optimization sparse large-scale multi-objec-tive problems two-layer encoding.
下载PDF
Sparse Planar Retrodirective Antenna Array Using Improved Adaptive Genetic Algorithm 被引量:3
3
作者 Feng-Ge Hu Jian-Hua Zhang Li-Ye Fang 《Journal of Electronic Science and Technology》 CAS 2011年第3期265-269,共5页
An improved adaptive genetic algorithm is presented in this paper. It primarily includes two modified methods: one is novel adaptive probabilities of crossover and mutation, the other is truncated selection approach.... An improved adaptive genetic algorithm is presented in this paper. It primarily includes two modified methods: one is novel adaptive probabilities of crossover and mutation, the other is truncated selection approach. This algorithm has been validated to be superior to the simple genetic algorithm (SGA) by a complicated binary testing function. Then the proposed algorithm is applied to optimizing the planar retrodirective array to reduce the cost of the hardware. The fitness function is discussed in the optimization example. After optimization, the sparse planar retrodirective antenna array keeps excellent retrodirectivity, while the array architecture has been simplified by 34%. The optimized antenna array can replace uniform full array effectively. Results show that this work will gain more engineering benefits in practice. 展开更多
关键词 Index Terms Adaptive genetic algorithm phase conjugation retrodirective antenna array sparse array.
下载PDF
A SPARSE MATRIX TECHNIQUE FOR SIMULATING SEMICONDUCTOR DEVICES AND ITS ALGORITHMS 被引量:2
4
作者 任建民 张义门 《Journal of Electronics(China)》 1990年第1期77-82,共6页
A novel sparse matrix technique for the numerical analysis of semiconductor devicesand its algorithms are presented.Storage scheme and calculation procedure of the sparse matrixare described in detail.The sparse matri... A novel sparse matrix technique for the numerical analysis of semiconductor devicesand its algorithms are presented.Storage scheme and calculation procedure of the sparse matrixare described in detail.The sparse matrix technique in the device simulation can decrease storagegreatly with less CPU time and its implementation is very easy.Some algorithms and calculationexamples to show the time and space characteristics of the sparse matrix are given. 展开更多
关键词 SEMICONDUCTOR devices sparse MATRIX TECHNIQUE algorithm CAD
下载PDF
Research on Evacuation Path Planning Based on Improved Sparrow Search Algorithm
5
作者 Xiaoge Wei Yuming Zhang +2 位作者 Huaitao Song Hengjie Qin Guanjun Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1295-1316,共22页
Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years.As part of this effort,an enhanced sparrow search algorithm(MSSA)was proposed.Fi... Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years.As part of this effort,an enhanced sparrow search algorithm(MSSA)was proposed.Firstly,the Golden Sine algorithm and a nonlinear weight factor optimization strategy were added in the discoverer position update stage of the SSA algorithm.Secondly,the Cauchy-Gaussian perturbation was applied to the optimal position of the SSA algorithm to improve its ability to jump out of local optima.Finally,the local search mechanism based on the mountain climbing method was incorporated into the local search stage of the SSA algorithm,improving its local search ability.To evaluate the effectiveness of the proposed algorithm,the Whale Algorithm,Gray Wolf Algorithm,Improved Gray Wolf Algorithm,Sparrow Search Algorithm,and MSSA Algorithm were employed to solve various test functions.The accuracy and convergence speed of each algorithm were then compared and analyzed.The results indicate that the MSSA algorithm has superior solving ability and stability compared to other algorithms.To further validate the enhanced algorithm’s capabilities for path planning,evacuation experiments were conducted using different maps featuring various obstacle types.Additionally,a multi-exit evacuation scenario was constructed according to the actual building environment of a teaching building.Both the sparrow search algorithm and MSSA algorithm were employed in the simulation experiment for multiexit evacuation path planning.The findings demonstrate that the MSSA algorithm outperforms the comparison algorithm,showcasing its greater advantages and higher application potential. 展开更多
关键词 Sparrow search algorithm optimization and improvement function test set evacuation path planning
下载PDF
Sparse reconstruction for fluorescence molecular tomography via a fast iterative algorithm 被引量:3
6
作者 Jingjing Yu Jingxing Cheng +1 位作者 Yuqing Hou Xiaowei He 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2014年第3期50-58,共9页
Fluorescence molecular tomography(FMT)is a fast-developing optical imaging modalitythat has great potential in early diagnosis of disease and drugs development.However,recon-struction algorithms have to address a high... Fluorescence molecular tomography(FMT)is a fast-developing optical imaging modalitythat has great potential in early diagnosis of disease and drugs development.However,recon-struction algorithms have to address a highly ill-posed problem to fulfll 3D reconstruction inFMT.In this contribution,we propose an efficient iterative algorithm to solve the large-scalereconstruction problem,in which the sparsity of fluorescent targets is taken as useful a prioriinformation in designing the reconstruction algorithm.In the implementation,a fast sparseapproximation scheme combined with a stage-wise learning strategy enable the algorithm to dealwith the ill-posed inverse problem at reduced computational costs.We validate the proposed fastiterative method with numerical simulation on a digital mouse model.Experimental results demonstrate that our method is robust for different finite element meshes and different Poissonnoise levels. 展开更多
关键词 Fluorescence molecular tomography sparse regularization reconstruction algorithm least absolute shrinkage and selection operator.
下载PDF
Jointly-check iterative decoding algorithm for quantum sparse graph codes 被引量:1
7
作者 邵军虎 白宝明 +1 位作者 林伟 周林 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第8期116-122,共7页
For quantum sparse graph codes with stabilizer formalism, the unavoidable girth-four cycles in their Tanner graphs greatly degrade the iterative decoding performance with standard belief-propagation (BP) algorithm. ... For quantum sparse graph codes with stabilizer formalism, the unavoidable girth-four cycles in their Tanner graphs greatly degrade the iterative decoding performance with standard belief-propagation (BP) algorithm. In this paper, we present a jointly-check iterative algorithm suitable for decoding quantum sparse graph codes efficiently. Numerical simulations show that this modified method outperforms standard BP algorithm with an obvious performance improvement. 展开更多
关键词 quantum error correction sparse graph code iterative decoding belief-propagation algorithm
下载PDF
New regularization method and iteratively reweighted algorithm for sparse vector recovery 被引量:1
8
作者 Wei ZHU Hui ZHANG Lizhi CHENG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第1期157-172,共16页
Motivated by the study of regularization for sparse problems,we propose a new regularization method for sparse vector recovery.We derive sufficient conditions on the well-posedness of the new regularization,and design... Motivated by the study of regularization for sparse problems,we propose a new regularization method for sparse vector recovery.We derive sufficient conditions on the well-posedness of the new regularization,and design an iterative algorithm,namely the iteratively reweighted algorithm(IR-algorithm),for efficiently computing the sparse solutions to the proposed regularization model.The convergence of the IR-algorithm and the setting of the regularization parameters are analyzed at length.Finally,we present numerical examples to illustrate the features of the new regularization and algorithm. 展开更多
关键词 regularization method iteratively reweighted algorithm(IR-algorithm) sparse vector recovery
下载PDF
A Disturbance Localization Method for Power System Based on Group Sparse Representation and Entropy Weight Method
9
作者 Zeyi Wang Mingxi Jiao +4 位作者 Daliang Wang Minxu Liu Minglei Jiang He Wang Shiqiang Li 《Energy Engineering》 EI 2024年第8期2275-2291,共17页
This paper addresses the problem of complex and challenging disturbance localization in the current power system operation environment by proposing a disturbance localization method for power systems based on group sp... This paper addresses the problem of complex and challenging disturbance localization in the current power system operation environment by proposing a disturbance localization method for power systems based on group sparse representation and entropy weight method.Three different electrical quantities are selected as observations in the compressed sensing algorithm.The entropy weighting method is employed to calculate the weights of different observations based on their relative disturbance levels.Subsequently,by leveraging the topological information of the power system and pre-designing an overcomplete dictionary of disturbances based on the corresponding system parameter variations caused by disturbances,an improved Joint Generalized Orthogonal Matching Pursuit(J-GOMP)algorithm is utilized for reconstruction.The reconstructed sparse vectors are divided into three parts.If at least two parts have consistent node identifiers,the node is identified as the disturbance node.If the node identifiers in all three parts are inconsistent,further analysis is conducted considering the weights to determine the disturbance node.Simulation results based on the IEEE 39-bus system model demonstrate that the proposed method,utilizing electrical quantity information from only 8 measurement points,effectively locates disturbance positions and is applicable to various disturbance types with strong noise resistance. 展开更多
关键词 Disturbance location compressed sensing group sparse representation entropy power method GOMP algorithm
下载PDF
BHJO: A Novel Hybrid Metaheuristic Algorithm Combining the Beluga Whale, Honey Badger, and Jellyfish Search Optimizers for Solving Engineering Design Problems
10
作者 Farouq Zitouni Saad Harous +4 位作者 Abdulaziz S.Almazyad Ali Wagdy Mohamed Guojiang Xiong Fatima Zohra Khechiba Khadidja  Kherchouche 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期219-265,共47页
Hybridizing metaheuristic algorithms involves synergistically combining different optimization techniques to effectively address complex and challenging optimization problems.This approach aims to leverage the strengt... Hybridizing metaheuristic algorithms involves synergistically combining different optimization techniques to effectively address complex and challenging optimization problems.This approach aims to leverage the strengths of multiple algorithms,enhancing solution quality,convergence speed,and robustness,thereby offering a more versatile and efficient means of solving intricate real-world optimization tasks.In this paper,we introduce a hybrid algorithm that amalgamates three distinct metaheuristics:the Beluga Whale Optimization(BWO),the Honey Badger Algorithm(HBA),and the Jellyfish Search(JS)optimizer.The proposed hybrid algorithm will be referred to as BHJO.Through this fusion,the BHJO algorithm aims to leverage the strengths of each optimizer.Before this hybridization,we thoroughly examined the exploration and exploitation capabilities of the BWO,HBA,and JS metaheuristics,as well as their ability to strike a balance between exploration and exploitation.This meticulous analysis allowed us to identify the pros and cons of each algorithm,enabling us to combine them in a novel hybrid approach that capitalizes on their respective strengths for enhanced optimization performance.In addition,the BHJO algorithm incorporates Opposition-Based Learning(OBL)to harness the advantages offered by this technique,leveraging its diverse exploration,accelerated convergence,and improved solution quality to enhance the overall performance and effectiveness of the hybrid algorithm.Moreover,the performance of the BHJO algorithm was evaluated across a range of both unconstrained and constrained optimization problems,providing a comprehensive assessment of its efficacy and applicability in diverse problem domains.Similarly,the BHJO algorithm was subjected to a comparative analysis with several renowned algorithms,where mean and standard deviation values were utilized as evaluation metrics.This rigorous comparison aimed to assess the performance of the BHJOalgorithmabout its counterparts,shedding light on its effectiveness and reliability in solving optimization problems.Finally,the obtained numerical statistics underwent rigorous analysis using the Friedman post hoc Dunn’s test.The resulting numerical values revealed the BHJO algorithm’s competitiveness in tackling intricate optimization problems,affirming its capability to deliver favorable outcomes in challenging scenarios. 展开更多
关键词 Global optimization hybridization of metaheuristics beluga whale optimization honey badger algorithm jellyfish search optimizer chaotic maps opposition-based learning
下载PDF
Inversion of Seabed Geotechnical Properties in the Arctic Chukchi Deep Sea Basin Based on Time Domain Adaptive Search Matching Algorithm
11
作者 AN Long XU Chong +5 位作者 XING Junhui GONG Wei JIANG Xiaodian XU Haowei LIU Chuang YANG Boxue 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第4期933-942,共10页
The chirp sub-bottom profiler,for its high resolution,easy accessibility and cost-effectiveness,has been widely used in acoustic detection.In this paper,the acoustic impedance and grain size compositions were obtained... The chirp sub-bottom profiler,for its high resolution,easy accessibility and cost-effectiveness,has been widely used in acoustic detection.In this paper,the acoustic impedance and grain size compositions were obtained based on the chirp sub-bottom profiler data collected in the Chukchi Plateau area during the 11th Arctic Expedition of China.The time-domain adaptive search matching algorithm was used and validated on our established theoretical model.The misfit between the inversion result and the theoretical model is less than 0.067%.The grain size was calculated according to the empirical relationship between the acoustic impedance and the grain size of the sediment.The average acoustic impedance of sub-seafloor strata is 2.5026×10^(6) kg(s m^(2))^(-1)and the average grain size(θvalue)of the seafloor surface sediment is 7.1498,indicating the predominant occurrence of very fine silt sediment in the study area.Comparison of the inversion results and the laboratory measurements of nearby borehole samples shows that they are in general agreement. 展开更多
关键词 time domain adaptive search matching algorithm acoustic impedance inversion sedimentary grain size Arctic Ocean Chukchi Deep Sea Basin
下载PDF
Improving path planning efficiency for underwater gravity-aided navigation based on a new depth sorting fast search algorithm
12
作者 Xiaocong Zhou Wei Zheng +2 位作者 Zhaowei Li Panlong Wu Yongjin Sun 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期285-296,共12页
This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapi... This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results. 展开更多
关键词 Depth Sorting Fast search algorithm Underwater gravity-aided navigation Path planning efficiency Quick Rapidly-exploring Random Trees*(QRRT*)
下载PDF
Highly Accurate Golden Section Search Algorithms and Fictitious Time Integration Method for Solving Nonlinear Eigenvalue Problems
13
作者 Chein-Shan Liu Jian-Hung Shen +1 位作者 Chung-Lun Kuo Yung-Wei Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1317-1335,共19页
This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solve... This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solved from a nonhomogeneous linear system obtained by reducing the number of eigen-equation one less,where one of the nonzero components of the eigenvector is normalized to the unit and moves the column containing that component to the right-hand side as a nonzero input vector.1D and 2D golden section search algorithms are employed to minimize the merit functions to locate real and complex eigenvalues.Simultaneously,the real and complex eigenvectors can be computed very accurately.A simpler approach to the nonlinear eigenvalue problems is proposed,which implements a normalization condition for the uniqueness of the eigenvector into the eigenequation directly.The real eigenvalues can be computed by the fictitious time integration method(FTIM),which saves computational costs compared to the one-dimensional golden section search algorithm(1D GSSA).The simpler method is also combined with the Newton iterationmethod,which is convergent very fast.All the proposed methods are easily programmed to compute the eigenvalue and eigenvector with high accuracy and efficiency. 展开更多
关键词 Nonlinear eigenvalue problem quadratic eigenvalue problem two new merit functions golden section search algorithm fictitious time integration method
下载PDF
Vibration Suppression for Active Magnetic Bearings Using Adaptive Filter with Iterative Search Algorithm
14
作者 Jin-Hui Ye Dan Shi +2 位作者 Yue-Sheng Qi Jin-Hui Gao Jian-Xin Shen 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第1期61-71,共11页
Active Magnetic Bearing(AMB) is a kind of electromagnetic support that makes the rotor movement frictionless and can suppress rotor vibration by controlling the magnetic force. The most common approach to restrain the... Active Magnetic Bearing(AMB) is a kind of electromagnetic support that makes the rotor movement frictionless and can suppress rotor vibration by controlling the magnetic force. The most common approach to restrain the rotor vibration in AMBs is to adopt a notch filter or adaptive filter in the AMB controller. However, these methods cannot obtain the precise amplitude and phase of the compensation current. Thus, they are not so effective in terms of suppressing the vibrations of the fundamental and other harmonic orders over the whole speed range. To improve the vibration suppression performance of AMBs,an adaptive filter based on Least Mean Square(LMS) is applied to extract the vibration signals from the rotor displacement signal. An Iterative Search Algorithm(ISA) is proposed in this paper to obtain the corresponding relationship between the compensation current and vibration signals. The ISA is responsible for searching the compensating amplitude and shifting phase online for the LMS filter, enabling the AMB controller to generate the corresponding compensation force for vibration suppression. The results of ISA are recorded to suppress vibration using the Look-Up Table(LUT) in variable speed range. Comprehensive simulations and experimental validations are carried out in fixed and variable speed range, and the results demonstrate that by employing the ISA, vibrations of the fundamental and other harmonic orders are suppressed effectively. 展开更多
关键词 Active Magnetic Bearing(AMB) Adaptive filter Iterative search algorithm Least mean square(LMS) Vibration suppression
下载PDF
Winter Wheat Yield Estimation Based on Sparrow Search Algorithm Combined with Random Forest:A Case Study in Henan Province,China
15
作者 SHI Xiaoliang CHEN Jiajun +2 位作者 DING Hao YANG Yuanqi ZHANG Yan 《Chinese Geographical Science》 SCIE CSCD 2024年第2期342-356,共15页
Precise and timely prediction of crop yields is crucial for food security and the development of agricultural policies.However,crop yield is influenced by multiple factors within complex growth environments.Previous r... Precise and timely prediction of crop yields is crucial for food security and the development of agricultural policies.However,crop yield is influenced by multiple factors within complex growth environments.Previous research has paid relatively little attention to the interference of environmental factors and drought on the growth of winter wheat.Therefore,there is an urgent need for more effective methods to explore the inherent relationship between these factors and crop yield,making precise yield prediction increasingly important.This study was based on four type of indicators including meteorological,crop growth status,environmental,and drought index,from October 2003 to June 2019 in Henan Province as the basic data for predicting winter wheat yield.Using the sparrow search al-gorithm combined with random forest(SSA-RF)under different input indicators,accuracy of winter wheat yield estimation was calcu-lated.The estimation accuracy of SSA-RF was compared with partial least squares regression(PLSR),extreme gradient boosting(XG-Boost),and random forest(RF)models.Finally,the determined optimal yield estimation method was used to predict winter wheat yield in three typical years.Following are the findings:1)the SSA-RF demonstrates superior performance in estimating winter wheat yield compared to other algorithms.The best yield estimation method is achieved by four types indicators’composition with SSA-RF)(R^(2)=0.805,RRMSE=9.9%.2)Crops growth status and environmental indicators play significant roles in wheat yield estimation,accounting for 46%and 22%of the yield importance among all indicators,respectively.3)Selecting indicators from October to April of the follow-ing year yielded the highest accuracy in winter wheat yield estimation,with an R^(2)of 0.826 and an RMSE of 9.0%.Yield estimates can be completed two months before the winter wheat harvest in June.4)The predicted performance will be slightly affected by severe drought.Compared with severe drought year(2011)(R^(2)=0.680)and normal year(2017)(R^(2)=0.790),the SSA-RF model has higher prediction accuracy for wet year(2018)(R^(2)=0.820).This study could provide an innovative approach for remote sensing estimation of winter wheat yield.yield. 展开更多
关键词 winter wheat yield estimation sparrow search algorithm combined with random forest(SSA-RF) machine learning multi-source indicator optimal lead time Henan Province China
下载PDF
Prediction Model of Wax Deposition Rate in Waxy Crude Oil Pipelines by Elman Neural Network Based on Improved Reptile Search Algorithm
16
作者 Zhuo Chen Ningning Wang +1 位作者 Wenbo Jin Dui Li 《Energy Engineering》 EI 2024年第4期1007-1026,共20页
A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines.To ensure the safe operation of crude oil pipelines,an accurate model must be developed to predict the rate of wax depositi... A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines.To ensure the safe operation of crude oil pipelines,an accurate model must be developed to predict the rate of wax deposition in crude oil pipelines.Aiming at the shortcomings of the ENN prediction model,which easily falls into the local minimum value and weak generalization ability in the implementation process,an optimized ENN prediction model based on the IRSA is proposed.The validity of the new model was confirmed by the accurate prediction of two sets of experimental data on wax deposition in crude oil pipelines.The two groups of crude oil wax deposition rate case prediction results showed that the average absolute percentage errors of IRSA-ENN prediction models is 0.5476% and 0.7831%,respectively.Additionally,it shows a higher prediction accuracy compared to the ENN prediction model.In fact,the new model established by using the IRSA to optimize ENN can optimize the initial weights and thresholds in the prediction process,which can overcome the shortcomings of the ENN prediction model,such as weak generalization ability and tendency to fall into the local minimum value,so that it has the advantages of strong implementation and high prediction accuracy. 展开更多
关键词 Waxy crude oil wax deposition rate chaotic map improved reptile search algorithm Elman neural network prediction accuracy
下载PDF
Fast Sparse Multipath Channel Estimation with Smooth L0 Algorithm for Broadband Wireless Communication Systems 被引量:1
17
作者 Guan Gui Qun Wan +1 位作者 Ni Na Wang Cong Yu Huang 《Communications and Network》 2011年第1期1-7,共7页
Broadband wireless channels are often time dispersive and become strongly frequency selective in delay spread domain. Commonly, these channels are composed of a few dominant coefficients and a large part of coefficien... Broadband wireless channels are often time dispersive and become strongly frequency selective in delay spread domain. Commonly, these channels are composed of a few dominant coefficients and a large part of coefficients are approximately zero or under noise floor. To exploit sparsity of multi-path channels (MPCs), there are various methods have been proposed. They are, namely, greedy algorithms, iterative algorithms, and convex program. The former two algorithms are easy to be implemented but not stable;on the other hand, the last method is stable but difficult to be implemented as practical channel estimation problems be-cause of computational complexity. In this paper, we introduce a novel channel estimation strategy using smooth L0 (SL0) algorithm which combines stable and low complexity. Computer simulations confirm the effectiveness of the introduced algorithm. We also give various simulations to verify the sensing training signal method. 展开更多
关键词 SMOOTH L0 algorithm RESTRICTED ISOMETRY Property sparse Channel Estimation Compressed Sensing
下载PDF
A Local Sparse Screening Identification Algorithm with Applications 被引量:1
18
作者 Hao Li Zhixia Wang Wei Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第8期765-782,共18页
Extracting nonlinear governing equations from noisy data is a central challenge in the analysis of complicated nonlinear behaviors.Despite researchers follow the sparse identification nonlinear dynamics algorithm(SIND... Extracting nonlinear governing equations from noisy data is a central challenge in the analysis of complicated nonlinear behaviors.Despite researchers follow the sparse identification nonlinear dynamics algorithm(SINDy)rule to restore nonlinear equations,there also exist obstacles.One is the excessive dependence on empirical parameters,which increases the difficulty of data pre-processing.Another one is the coexistence of multiple coefficient vectors,which causes the optimal solution to be drowned in multiple solutions.The third one is the composition of basic function,which is exclusively applicable to specific equations.In this article,a local sparse screening identification algorithm(LSSI)is proposed to identify nonlinear systems.First,we present the k-neighbor parameter to replace all empirical parameters in data filtering.Second,we combine the mean error screening method with the SINDy algorithm to select the optimal one from multiple solutions.Third,the time variable t is introduced to expand the scope of the SINDy algorithm.Finally,the LSSI algorithm is applied to recover a classic ODE and a bi-stable energy harvester system.The results show that the new algorithm improves the ability of noise immunity and optimal parameters identification provides a desired foundation for nonlinear analyses. 展开更多
关键词 The k-neighbor parameter sparse identification nonlinear dynamics algorithm mean error screening method the basic function energy harvester
下载PDF
线性测量误差回归模型下Sparse Group Lasso方法研究
19
作者 钟铭瑞 印赞华 汪志超 《赣南师范大学学报》 2024年第3期42-47,共6页
双重稀疏结构的线性回归模型是一种描述解释变量组间和组内同时具有稀疏性的统计模型,我们常用Sparse Group Lasso对此模型进行变量选择.然而在很多应用中,解释变量很难做到精确测量,从而我们在应用Sparse Group Lasso方法时需要考虑测... 双重稀疏结构的线性回归模型是一种描述解释变量组间和组内同时具有稀疏性的统计模型,我们常用Sparse Group Lasso对此模型进行变量选择.然而在很多应用中,解释变量很难做到精确测量,从而我们在应用Sparse Group Lasso方法时需要考虑测量误差的影响.针对这一问题,本文提出了一种具有双重稀疏结构的线性测量误差回归模型的Sparse Group Lasso变量选择方法(MESGL).该方法先利用半正定投影算子对观测数据的误差进行修正,然后借助ADMM算法对修正后的数据进行恢复,最后利用Sparse Group Lasso方法进行变量选择和参数估计.在一些正则条件下,我们建立了参数估计量的非渐近Oracle不等式,并且通过随机模拟分析验证了MESGL方法在变量选择和参数估计上取得的良好效果. 展开更多
关键词 双重稀疏结构 测量误差 变量选择 ADMM算法 非渐近Oracle不等式
下载PDF
Parametrically Optimal, Robust and Tree-Search Detection of Sparse Signals
20
作者 A. T. Burrell P. Papantoni-Kazakos 《Journal of Signal and Information Processing》 2013年第3期336-342,共7页
We consider sparse signals embedded in additive white noise. We study parametrically optimal as well as tree-search sub-optimal signal detection policies. As a special case, we consider a constant signal and Gaussian ... We consider sparse signals embedded in additive white noise. We study parametrically optimal as well as tree-search sub-optimal signal detection policies. As a special case, we consider a constant signal and Gaussian noise, with and without data outliers present. In the presence of outliers, we study outlier resistant robust detection techniques. We compare the studied policies in terms of error performance, complexity and resistance to outliers. 展开更多
关键词 sparse Signals DETECTION Robustness OUTLIER Resistance TREE search
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部