期刊文献+
共找到65篇文章
< 1 2 4 >
每页显示 20 50 100
Multimodality Prediction of Chaotic Time Series with Sparse Hard-Cut EM Learning of the Gaussian Process Mixture Model 被引量:1
1
作者 周亚同 樊煜 +1 位作者 陈子一 孙建成 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第5期22-26,共5页
The contribution of this work is twofold: (1) a multimodality prediction method of chaotic time series with the Gaussian process mixture (GPM) model is proposed, which employs a divide and conquer strategy. It au... The contribution of this work is twofold: (1) a multimodality prediction method of chaotic time series with the Gaussian process mixture (GPM) model is proposed, which employs a divide and conquer strategy. It automatically divides the chaotic time series into multiple modalities with different extrinsic patterns and intrinsic characteristics, and thus can more precisely fit the chaotic time series. (2) An effective sparse hard-cut expec- tation maximization (SHC-EM) learning algorithm for the GPM model is proposed to improve the prediction performance. SHO-EM replaces a large learning sample set with fewer pseudo inputs, accelerating model learning based on these pseudo inputs. Experiments on Lorenz and Chua time series demonstrate that the proposed method yields not only accurate multimodality prediction, but also the prediction confidence interval SHC-EM outperforms the traditional variational 1earning in terms of both prediction accuracy and speed. In addition, SHC-EM is more robust and insusceptible to noise than variational learning. 展开更多
关键词 gpM Multimodality Prediction of Chaotic Time Series with sparse Hard-Cut EM Learning of the gaussian process Mixture Model EM SHC
下载PDF
MULTI-SCALE GAUSSIAN PROCESSES MODEL 被引量:4
2
作者 Zhou Yatong Zhang Taiyi Li Xiaohe 《Journal of Electronics(China)》 2006年第4期618-622,共5页
A novel model named Multi-scale Gaussian Processes (MGP) is proposed. Motivated by the ideas of multi-scale representations in the wavelet theory, in the new model, a Gaussian process is represented at a scale by a li... A novel model named Multi-scale Gaussian Processes (MGP) is proposed. Motivated by the ideas of multi-scale representations in the wavelet theory, in the new model, a Gaussian process is represented at a scale by a linear basis that is composed of a scale function and its different translations. Finally the distribution of the targets of the given samples can be obtained at different scales. Compared with the standard Gaussian Processes (GP) model, the MGP model can control its complexity conveniently just by adjusting the scale pa-rameter. So it can trade-off the generalization ability and the empirical risk rapidly. Experiments verify the fea-sibility of the MGP model, and exhibit that its performance is superior to the GP model if appropriate scales are chosen. 展开更多
关键词 gaussian processes gp Wavelet theory MULTI-SCALE Error bar Machine learning
下载PDF
Gaussian Process Modeling of Process Optimization and Parameter Correlation for Injection Molding 被引量:1
3
作者 Xiaoping Liao Wei Xia Fengying Long 《材料科学与工程(中英文版)》 2010年第10期90-97,共8页
关键词 高斯过程 过程优化 注射成型 过程建模 拉丁超立方体抽样 工艺参数优化 回归模型 最佳工艺条件
下载PDF
基于ECM和SGPR的高鲁棒性锂离子电池健康状态估计方法 被引量:1
4
作者 崔显 陈自强 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第5期747-759,共13页
锂离子电池健康状态(SOH)的准确估计对于保障电池系统安全运行具有重要意义.针对传统SOH估计方法在可变工况下失效的问题,提出了一种基于等效电路模型和稀疏高斯过程回归的锂离子电池SOH在线估计方法.通过两个在线滤波器,在恒流充电过... 锂离子电池健康状态(SOH)的准确估计对于保障电池系统安全运行具有重要意义.针对传统SOH估计方法在可变工况下失效的问题,提出了一种基于等效电路模型和稀疏高斯过程回归的锂离子电池SOH在线估计方法.通过两个在线滤波器,在恒流充电过程中动态地辨识了锂离子电池等效电路模型的各项参数,构建了工况不敏感的健康因子,结合稀疏高斯过程回归实现SOH的间接估计.该方法在多种工况下使用统一的信号处理方法和特征映射模型,兼具鲁棒性强和冗余度低的优点.实验结果表明,该方法在多种工况下的平均绝对误差不超过0.94%,均方根误差不超过1.12%,与现有方法相比,该方法在综合性能上具有显著优势. 展开更多
关键词 锂离子电池 健康状态 健康因子 粒子滤波 稀疏高斯过程回归
下载PDF
基于VMD-DESN-MSGP模型的超短期光伏功率预测 被引量:47
5
作者 王粟 江鑫 +1 位作者 曾亮 常雨芳 《电网技术》 EI CSCD 北大核心 2020年第3期917-926,共10页
光伏功率时间序列受到多种因素影响,呈现出高度的随机性和波动性。针对光伏功率时间序列可预测性低的问题,提出了一种结合变分模态分解(variationalmodal decomposition,VMD)、深度回声状态网络(deepechostate network,DESN)和稀疏高斯... 光伏功率时间序列受到多种因素影响,呈现出高度的随机性和波动性。针对光伏功率时间序列可预测性低的问题,提出了一种结合变分模态分解(variationalmodal decomposition,VMD)、深度回声状态网络(deepechostate network,DESN)和稀疏高斯混合过程专家模型(mixtureof sparse gaussian process experts model,MSGP)的超短期光伏功率预测方法。首先采用VMD将光伏功率时间序列分解为不同的模态,降低数据的非平稳性;为提高模型在超短尺度时序的预测能力,对各模态分别建立DESN预测模型,将各模态预测结果进行求和重构;为进一步提高模型预测精度,对误差的特性进行分析,采用MSGP对预测误差进行补偿;最后将误差的预测值与原功率的预测值相叠加作为最终预测结果。仿真结果表明,该方法在光伏功率时序预测中的效果比传统预测模型更好,有效提高了超短期光伏功率时间序列预测的准确性。 展开更多
关键词 光伏功率预测 时间序列 变分模态分解 深度回声状态网络 稀疏高斯混合过程专家模型
下载PDF
利用GPS探测电离层异常中的高斯过程处理方法 被引量:2
6
作者 章红平 朱文耀 +1 位作者 黄珹 平劲松 《天文学进展》 CSCD 北大核心 2005年第4期363-370,共8页
平静状态下电离层总电子含量(TEC)随时间的变化通常可以视为平稳随机过程。然而,太阳或地球的突发事件(如太阳耀斑、地磁场的扰动)会引起电离层的扰动,破坏该平稳过程,从而引起其统计参数的变化。依据平稳随机过程—高斯过程的相关... 平静状态下电离层总电子含量(TEC)随时间的变化通常可以视为平稳随机过程。然而,太阳或地球的突发事件(如太阳耀斑、地磁场的扰动)会引起电离层的扰动,破坏该平稳过程,从而引起其统计参数的变化。依据平稳随机过程—高斯过程的相关性质,利用其自协方差函数和TEC时间系列,构建了独立同标准正态分布的观测样本,并利用x^2假设检验的方法来探测电离层异常现象。此外,还利用了2000年7月14日太阳耀斑期间我国国际IGS跟踪站武汉GPS跟踪站的数据,进行了实例分析。结果表明,该方法可以有效地探测电离层异常现象。 展开更多
关键词 天体测量学 gpS 电离层总电子含量(TEC) 高斯过程 异常探测
下载PDF
基于粒子群算法的高斯过程建模对GPS天线优化设计研究 被引量:2
7
作者 强哲 陈艺 +1 位作者 田雨波 许兰 《电波科学学报》 EI CSCD 北大核心 2016年第5期927-932,共6页
目前微带天线的优化设计主要采用优化算法与电磁仿真软件HFSS相结合的方案,但使用HFSS进行大量的精确电磁仿真花费时间较长且对硬件要求较高.为解决此问题,提出了一种在优化过程中利用高斯过程模型替代全波电磁仿真软件的方法,并应用粒... 目前微带天线的优化设计主要采用优化算法与电磁仿真软件HFSS相结合的方案,但使用HFSS进行大量的精确电磁仿真花费时间较长且对硬件要求较高.为解决此问题,提出了一种在优化过程中利用高斯过程模型替代全波电磁仿真软件的方法,并应用粒子群算法进行优化设计,这种方案可以有效减少优化设计所需时间.利用该方法对GPS北斗双模微带天线进行了优化设计,在花费时间只有原方法0.2%的基础上所设计的天线能够满足设计指标,证明了该方法的有效性. 展开更多
关键词 高斯过程模型 PSO gpS天线 HFSS
下载PDF
基于AR-GP模型的结构损伤识别方法 被引量:6
8
作者 唐启智 辛景舟 +2 位作者 周建庭 付雷 周滨枫 《振动与冲击》 EI CSCD 北大核心 2021年第9期102-109,共8页
针对传统损伤识别方法不易区分多损伤状态以及难以辨别预测结果可靠性的问题,提出了一种基于自回归(autoregressive,AR)模型和高斯过程(Gaussian process,GP)的损伤识别方法。该方法利用AR模型回归拟合结构加速度响应数据,首次引入表征... 针对传统损伤识别方法不易区分多损伤状态以及难以辨别预测结果可靠性的问题,提出了一种基于自回归(autoregressive,AR)模型和高斯过程(Gaussian process,GP)的损伤识别方法。该方法利用AR模型回归拟合结构加速度响应数据,首次引入表征损伤位置信息与损伤状态信息的参数L1、L2,基于AR模型残差、系数分别建立了用于定位损伤位置和识别损伤程度的损伤敏感性特征,结合GP的分类与回归算法实现了多损伤定位及损伤程度的概率输出。通过某钢筋混凝土模型拱的数值仿真算例,验证了所提方法的有效性,并对基于AR模型残差和系数的识别结果进行了对比分析。结果表明,该方法能够识别多损伤状态,输出具有概率意义的预测结果,有助于判断结果的可靠性,并能够实现损伤预警,同时基于残差的损伤敏感性特征的识别精度与可靠度更高、抗噪性能更好,在10%噪声污染的情况下,识别结果的相对误差均值与离散系数均值仅为6.52%和0.19。 展开更多
关键词 自回归模型 高斯过程 多损伤定位 概率输出 预警
下载PDF
面向超宽带室内定位的FCM-SSGP方法
9
作者 张盛 唐帆 +1 位作者 张天骐 范森 《计算机工程》 CAS CSCD 北大核心 2023年第3期211-220,共10页
受室内墙壁、玻璃、木门等障碍物影响,UWB室内定位中UWB信号的传播环境变为非视距环境,在该环境下定位将极大降低定位精度。现有抑制NLOS误差的方法由于复杂度较大导致定位时间过长,结合模糊C均值(FCM)聚类及稀疏谱高斯过程回归(SSGP)方... 受室内墙壁、玻璃、木门等障碍物影响,UWB室内定位中UWB信号的传播环境变为非视距环境,在该环境下定位将极大降低定位精度。现有抑制NLOS误差的方法由于复杂度较大导致定位时间过长,结合模糊C均值(FCM)聚类及稀疏谱高斯过程回归(SSGP)方法,提出一种FCM-SSGP定位方法。对接收到的信道冲击响应信号提取特征,利用FCM聚类识别NLOS信号,并根据NLOS信号传播环境的恶劣程度将NLOS信号划分为轻度NLOS信号和一般NLOS信号。使用SSGP方法分别得到2个不同信道条件下的NLOS误差,将SSGP方法得到的测距误差与FCM聚类得到的隶属度相结合作为权值,以抑制NLOS误差。实验结果表明,FCM-SSGP方法能有效降低不同障碍物带来的NLOS误差,定位误差为21.01 cm,与LS-SVM及SPGP方法相比,其定位误差均值分别提升了8.23 cm和6.73 cm,定位所需时间相比LSTM方法缩短了9.35倍,在保证高定位精度的同时降低了计算复杂度。 展开更多
关键词 非视距抑制 非视距识别 模糊C均值 稀疏谱高斯过程 超宽带定位
下载PDF
On-line estimation of concentration parameters in fermentation processes
10
作者 熊志化 黄国宏 邵惠鹤 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE EI CAS CSCD 2005年第6期530-534,共5页
It has long been thought that bioprocess, with their inherent measurement difficulties and complex dynamics, posed almost insurmountable problems to engineers. A novel software sensor is proposed to make more effectiv... It has long been thought that bioprocess, with their inherent measurement difficulties and complex dynamics, posed almost insurmountable problems to engineers. A novel software sensor is proposed to make more effective use of those meas- urements that are already available, which enable improvement in fermentation process control. The proposed method is based on mixtures of Gaussian processes (GP) with expectation maximization (EM) algorithm employed for parameter estimation of mixture of models. The mixture model can alleviate computational complexity of GP and also accord with changes of operating condition in fermentation processes, i.e., it would certainly be able to examine what types of process-knowledge would be most relevant for local models’ specific operating points of the process and then combine them into a global one. Demonstrated by on-line estimate of yeast concentration in fermentation industry as an example, it is shown that soft sensor based state estimation is a powerful technique for both enhancing automatic control performance of biological systems and implementing on-line moni- toring and optimization. 展开更多
关键词 gaussian processes (gp) Expectation maximization (EM) Multiple models Soft sensor Yeast concentration Fermentation processes
下载PDF
基于非对称离散高斯似然的深度图像压缩方法
11
作者 罗春 何小海 +2 位作者 卿粼波 任超 熊淑华 《通信技术》 2024年第1期13-18,共6页
相较于传统的图像压缩技术,深度图像压缩可以提供更优的率失真性能,甚至可以超越最新的压缩编码标准多功能视频编码(Versatile Video Coding,VVC)。然而,随着网络复杂度的提升,深度图像压缩技术的提升亦有瓶颈。因此,提出了非对称离散... 相较于传统的图像压缩技术,深度图像压缩可以提供更优的率失真性能,甚至可以超越最新的压缩编码标准多功能视频编码(Versatile Video Coding,VVC)。然而,随着网络复杂度的提升,深度图像压缩技术的提升亦有瓶颈。因此,提出了非对称离散高斯分布的深度图像压缩方法。并非优化编解码器或是熵模型,该方法在隐空间借助语义信息和稀疏过程,实现单高斯分布向非对称高斯分布的迁移,以节约码流。相较其他方法,所提方法具有更优的率失真性能,在Kodak数据集上解码的图像更加真实自然。 展开更多
关键词 图像压缩 非对称离散高斯分布 语义信息 稀疏过程
下载PDF
基于正交局部保持映射和成本优化的多变量时间序列早期分类模型
12
作者 袁子璇 翁小清 戈宁振 《计算机应用》 CSCD 北大核心 2024年第6期1832-1841,共10页
时间序列早期分类(ETSC)有两个矛盾的目标:早期性和准确率。分类早期性的实现,总是以牺牲它的准确率为代价。现有基于优化的多变量时间序列(MTS)早期分类方法,虽然在成本函数中考虑了错误分类成本和延迟决策成本,却忽视了MTS数据集样本... 时间序列早期分类(ETSC)有两个矛盾的目标:早期性和准确率。分类早期性的实现,总是以牺牲它的准确率为代价。现有基于优化的多变量时间序列(MTS)早期分类方法,虽然在成本函数中考虑了错误分类成本和延迟决策成本,却忽视了MTS数据集样本之间的局部结构对分类性能的影响。针对这个问题,提出一种基于正交局部保持映射(OLPP)和成本优化的MTS早期分类模型(OLPPMOAE)。首先,使用OLPP将MTS样本前缀映射到低维空间,保持原数据集的局部结构;其次,在低维空间训练一组高斯过程(GP)分类器,生成训练集每个时刻的类概率;最后,使用粒子群优化(PSO)算法从这些类概率中学习停止规则中的最优参数。在6个MTS数据集上的实验结果表明,在早期性基本持平的情况下,OLPPMOAE的准确率显著高于基于成本的R1_C_(lr)(stopping Rule and Cost function with regularization term l_(1)and l_(2))模型,平均准确率能够提升11.33%~15.35%,调和均值(HM)能够提升4.71%~9.01%。因此,所提模型能够以较高的准确率尽早地分类MTS。 展开更多
关键词 多变量时间序列 早期分类 正交局部保持映射 成本优化 高斯过程分类器
下载PDF
抗噪性高斯过程用于风电系统暂态电压稳定性的评估
13
作者 王强 张津 李上杨 《南方电网技术》 CSCD 北大核心 2024年第9期126-137,共12页
基于机器学习的风电系统安全评估方法已成为当下热点,但对样本噪声影响不予以充分考虑,则难以保证系统暂态电压稳定性评估的准确性和可靠性。为此构建抗噪性高斯过程多分类模型(noisy input multi-class Gaussian process,NIMGP),首先,... 基于机器学习的风电系统安全评估方法已成为当下热点,但对样本噪声影响不予以充分考虑,则难以保证系统暂态电压稳定性评估的准确性和可靠性。为此构建抗噪性高斯过程多分类模型(noisy input multi-class Gaussian process,NIMGP),首先,引入稀疏高斯过程,选用诱导点代替部分原输入点进行训练,以降低模型计算的复杂度;其次,对模型中的输入数据引入可加性高斯噪声实现抗噪处理,通过泰勒级数法近似求解含噪声输入的高斯过程,使输入噪声转化为输出噪声、改善模型评估性能。最后,在含风电场的新英格兰39节点系统进行仿真,对系统暂态电压的稳定、临界和失稳状态及稳定样本的稳定裕度进行预测。多种不同工况仿真结果对比表明,NIMGP具有较强的泛化能力、在不同工况下仍有较好的预测精度。 展开更多
关键词 风电系统 稀疏高斯过程 抗噪性高斯过程 多分类 稳定裕度
下载PDF
基于区间适应值交互式遗传算法的加权多输出高斯过程代理模型 被引量:24
14
作者 孙晓燕 陈姗姗 +1 位作者 巩敦卫 张勇 《自动化学报》 EI CSCD 北大核心 2014年第2期172-184,共13页
融合了用户认知和智能评价的交互式遗传算法(Interactive genetic algorithm,IGA)是解决一类定性性能指标优化问题的有效方法,但是,评价不确定性和易疲劳性极大地限制了该算法解决实际问题的能力.基于用户已评价信息,采用合适的机器学... 融合了用户认知和智能评价的交互式遗传算法(Interactive genetic algorithm,IGA)是解决一类定性性能指标优化问题的有效方法,但是,评价不确定性和易疲劳性极大地限制了该算法解决实际问题的能力.基于用户已评价信息,采用合适的机器学习方法,构建用户认知代理模型是解决上述问题的常用方法之一.但是,现有研究成果均没有考虑用户评价不确定性对学习样本、代理模型的影响,以及模型拟合不确定性对基于适应值的进化操作有效性的影响.针对上述问题,本文提出基于加权多输出高斯过程(Gaussian process,GP)代理模型的交互式遗传算法.首先,在区间适应值评价模式下,提取学习样本的噪声特性,以确定相应学习样本对代理模型的影响度权重系数,构建两输出高斯过程代理模型;然后,利用代理模型提供的预测值及预测置信水平,给出一种新的个体适应值估计方法和个体选择方法;基于模型预测信息,实现模型更新管理.将所提算法分别应用于含噪函数和服装设计问题中,所得结果表明本文算法可更好地拟合和跟踪用户认知,减小对进化搜索的误导,更快找到用户满意解. 展开更多
关键词 遗传算法 交互 代理模型 高斯过程 加权多输出
下载PDF
基于非平稳高斯过程的叶栅加工误差不确定性量化 被引量:18
15
作者 颜勇 祝培源 +2 位作者 宋立明 李军 丰镇平 《推进技术》 EI CAS CSCD 北大核心 2017年第8期1767-1775,共9页
基于非平稳高斯过程描述叶片加工误差,结合Karhunen-Loeve展开方法,建立了由于加工误差导致的叶片型线几何不确定性表征模型。耦合非嵌入式多项式混沌展开、稀疏网格技术与Reynolds-Averaged Navier-Stokes(RANS)方程求解技术,提出了叶... 基于非平稳高斯过程描述叶片加工误差,结合Karhunen-Loeve展开方法,建立了由于加工误差导致的叶片型线几何不确定性表征模型。耦合非嵌入式多项式混沌展开、稀疏网格技术与Reynolds-Averaged Navier-Stokes(RANS)方程求解技术,提出了叶栅加工误差不确定性量化方法,研究量化了加工误差所导致的叶型几何不确定性对典型高负荷Pak-B叶栅气动性能的影响。结果表明,在加工误差影响下,叶片负荷相对于设计值变化±1%以上的概率为0.56,总压恢复系数相对于设计值降低1%以上的概率为0.12。详细气动分析表明,斜切部分和尾缘的加工制造精度对Pak-B叶栅气动性能影响显著,相应位置的加工误差应严格控制。 展开更多
关键词 非平稳高斯过程 多项式混沌 稀疏网格 加工误差 不确定性量化
下载PDF
基于孤立森林与稀疏高斯过程回归的风电机组偏航角零点漂移诊断方法 被引量:21
16
作者 杨建 王力 +3 位作者 宋冬然 董密 陈思范 黄凌翔 《中国电机工程学报》 EI CSCD 北大核心 2021年第18期6198-6211,共14页
偏航角零点漂移严重影响风电机组性能,将之消除的前提是对其进行可靠且快速的检测。基于风能捕获机理,该文提出一种运用机器学习算法的偏航角零点漂移诊断方法。首先,采用孤立森林(isolated forest,IF)异常值检测算法对数据进行预处理;... 偏航角零点漂移严重影响风电机组性能,将之消除的前提是对其进行可靠且快速的检测。基于风能捕获机理,该文提出一种运用机器学习算法的偏航角零点漂移诊断方法。首先,采用孤立森林(isolated forest,IF)异常值检测算法对数据进行预处理;其次,建立非参数模型稀疏高斯过程回归(sparse Gaussian process regression,SGPR)估计偏航角零点漂移;最后,利用多个风电场的风电机组实际运行数据对所提方法进行验证,并分析不同诊断模型对数据量的依赖性。结果表明:IF+SGPR方法准确性高,所需数据量少,能够快速诊断偏航角零点漂移;该诊断方法能够应用于各种电场不同型号的风电机组,普适性较高。 展开更多
关键词 风电机组 零点漂移 偏航角 偏航误差 孤立森林 稀疏高斯过程回归
下载PDF
基于高斯过程分类的串联直流电弧故障检测 被引量:14
17
作者 张冠英 张艳娇 +1 位作者 赵远 王尧 《高压电器》 CAS CSCD 北大核心 2020年第4期1-7,14,共8页
随着可再生能源和电力电子技术的飞速发展,直流系统在各个领域都得到了广泛应用。但由绝缘损坏、接头松动等原因引起的直流电弧故障是威胁直流系统正常运行的主要因素。为了解决直流电弧故障由于不存在过零点和平肩现象而难以检测的问题... 随着可再生能源和电力电子技术的飞速发展,直流系统在各个领域都得到了广泛应用。但由绝缘损坏、接头松动等原因引起的直流电弧故障是威胁直流系统正常运行的主要因素。为了解决直流电弧故障由于不存在过零点和平肩现象而难以检测的问题,文中将高斯过程模型引入电弧故障研究,进行不同负载下串联直流电弧故障试验。通过提取电流差均值、谐波能量和组成特征向量,利用高斯过程分类进行电弧故障训练、预测分类。试验结果表明,该检测方法能够准确识别电弧故障。 展开更多
关键词 串联直流电弧故障 高斯过程分类 高斯二元分类模型
下载PDF
岩体爆破效应预测的一种新方法 被引量:9
18
作者 苏国韶 宋咏春 燕柳斌 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2007年第A01期3509-3514,共6页
高斯过程是一种最近发展起来新的机器学习技术,对处理非线性复杂问题具有很好的适应性。岩体爆破效应与其影响因素之间是复杂的非线性关系,针对传统方法的局限性,提出一种基于高斯过程的岩体爆破效应预测的新方法,建立相应的岩体爆破效... 高斯过程是一种最近发展起来新的机器学习技术,对处理非线性复杂问题具有很好的适应性。岩体爆破效应与其影响因素之间是复杂的非线性关系,针对传统方法的局限性,提出一种基于高斯过程的岩体爆破效应预测的新方法,建立相应的岩体爆破效应预测模型,并应用于三峡工程坝区岩体爆破振动速度、爆破损伤深度与损伤半径的预测。通过三峡现场爆破试验数据,建立训练数据集和测试数据集,采用高斯过程方法建立爆破效应与影响因素之间的各影响因素之间的非线性映射关系。研究结果表明,岩体爆破振动速度、爆破损伤深度与损伤半径的预测结果与现场试验结果比较吻合,用高斯过程方法预测岩体爆破效应是科学可行的。与神经网络方法相比,高斯过程方法具有算法参数自适应化的特点,且适用于小样本问题,预测精度高,并易于实现,具有良好的工程应用前景。 展开更多
关键词 岩石力学 高斯过程 机器学习 爆破效应 预测
下载PDF
基于遗传–组合核函数高斯过程回归算法的边坡非线性变形时序分析智能模型 被引量:16
19
作者 刘开云 刘保国 徐冲 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2009年第10期2128-2134,共7页
与支持向量机相比,高斯过程有着容易实现、灵活的非参数推断及预测输出具有概率意义等优点。将高斯过程回归引入边坡非线性变形时序分析,采用单一核函数之和作为高斯过程回归的组合核函数以提高其泛化性能。目前通常采用共轭梯度法求取... 与支持向量机相比,高斯过程有着容易实现、灵活的非参数推断及预测输出具有概率意义等优点。将高斯过程回归引入边坡非线性变形时序分析,采用单一核函数之和作为高斯过程回归的组合核函数以提高其泛化性能。目前通常采用共轭梯度法求取训练样本对数似然函数的极大值以自适应地获得最优超参数,但共轭梯度法存在优化效果初值依赖性强、迭代次数难以确定、易陷入局部最优解的缺陷。改用十进制遗传算法在训练过程中搜索最优超参数,形成遗传–组合核函数高斯过程回归算法,并编制了相应的计算程序。卧龙寺新滑坡变形时序分析结果表明,与遗传–单一核函数高斯过程回归算法和遗传–支持向量回归算法相比,所提出的遗传–组合核函数高斯过程回归算法显著提高预测精度,可以应用于边坡变形的时序分析,并为类似工程提供借鉴。 展开更多
关键词 边坡工程 变形预测 高斯过程 组合核函数 遗传算法
下载PDF
基于粒子群优化与高斯过程的协同优化算法 被引量:9
20
作者 张研 苏国韶 燕柳斌 《系统工程与电子技术》 EI CSCD 北大核心 2013年第6期1342-1347,共6页
对于适应度函数计算耗时较大的工程优化问题,采用仿生智能优化算法求解时常遇到由于适应度函数评价次数过大而导致计算量过高的瓶颈问题。针对上述问题,提出一种基于粒子群优化(particle swarm opti-mization,PSO)算法与高斯过程(Gaussi... 对于适应度函数计算耗时较大的工程优化问题,采用仿生智能优化算法求解时常遇到由于适应度函数评价次数过大而导致计算量过高的瓶颈问题。针对上述问题,提出一种基于粒子群优化(particle swarm opti-mization,PSO)算法与高斯过程(Gaussian process,GP)机器学习方法的协同优化算法(PSO-GP)。该算法在寻优过程中采用GP近似模型来构建决策变量与适应度函数值之间的映射关系,在PSO全局寻优过程中不断地总结寻优历史经验的基础上,预测可能包含全局最优解的搜索区域,以优化粒子群飞行的方向。多个测试函数的优化结果表明,该算法是可行的,与基本PSO算法相比,在获得全局最优解的前提下,可显著减小寻优过程中的适应度函数评价次数,寻优效率较高,在高计算代价复杂工程优化问题的求解上具有良好的应用前景。 展开更多
关键词 优化算法 粒子群优化 高斯过程 函数优化
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部