The contribution of this work is twofold: (1) a multimodality prediction method of chaotic time series with the Gaussian process mixture (GPM) model is proposed, which employs a divide and conquer strategy. It au...The contribution of this work is twofold: (1) a multimodality prediction method of chaotic time series with the Gaussian process mixture (GPM) model is proposed, which employs a divide and conquer strategy. It automatically divides the chaotic time series into multiple modalities with different extrinsic patterns and intrinsic characteristics, and thus can more precisely fit the chaotic time series. (2) An effective sparse hard-cut expec- tation maximization (SHC-EM) learning algorithm for the GPM model is proposed to improve the prediction performance. SHO-EM replaces a large learning sample set with fewer pseudo inputs, accelerating model learning based on these pseudo inputs. Experiments on Lorenz and Chua time series demonstrate that the proposed method yields not only accurate multimodality prediction, but also the prediction confidence interval SHC-EM outperforms the traditional variational 1earning in terms of both prediction accuracy and speed. In addition, SHC-EM is more robust and insusceptible to noise than variational learning.展开更多
A novel model named Multi-scale Gaussian Processes (MGP) is proposed. Motivated by the ideas of multi-scale representations in the wavelet theory, in the new model, a Gaussian process is represented at a scale by a li...A novel model named Multi-scale Gaussian Processes (MGP) is proposed. Motivated by the ideas of multi-scale representations in the wavelet theory, in the new model, a Gaussian process is represented at a scale by a linear basis that is composed of a scale function and its different translations. Finally the distribution of the targets of the given samples can be obtained at different scales. Compared with the standard Gaussian Processes (GP) model, the MGP model can control its complexity conveniently just by adjusting the scale pa-rameter. So it can trade-off the generalization ability and the empirical risk rapidly. Experiments verify the fea-sibility of the MGP model, and exhibit that its performance is superior to the GP model if appropriate scales are chosen.展开更多
It has long been thought that bioprocess, with their inherent measurement difficulties and complex dynamics, posed almost insurmountable problems to engineers. A novel software sensor is proposed to make more effectiv...It has long been thought that bioprocess, with their inherent measurement difficulties and complex dynamics, posed almost insurmountable problems to engineers. A novel software sensor is proposed to make more effective use of those meas- urements that are already available, which enable improvement in fermentation process control. The proposed method is based on mixtures of Gaussian processes (GP) with expectation maximization (EM) algorithm employed for parameter estimation of mixture of models. The mixture model can alleviate computational complexity of GP and also accord with changes of operating condition in fermentation processes, i.e., it would certainly be able to examine what types of process-knowledge would be most relevant for local models’ specific operating points of the process and then combine them into a global one. Demonstrated by on-line estimate of yeast concentration in fermentation industry as an example, it is shown that soft sensor based state estimation is a powerful technique for both enhancing automatic control performance of biological systems and implementing on-line moni- toring and optimization.展开更多
相较于传统的图像压缩技术,深度图像压缩可以提供更优的率失真性能,甚至可以超越最新的压缩编码标准多功能视频编码(Versatile Video Coding,VVC)。然而,随着网络复杂度的提升,深度图像压缩技术的提升亦有瓶颈。因此,提出了非对称离散...相较于传统的图像压缩技术,深度图像压缩可以提供更优的率失真性能,甚至可以超越最新的压缩编码标准多功能视频编码(Versatile Video Coding,VVC)。然而,随着网络复杂度的提升,深度图像压缩技术的提升亦有瓶颈。因此,提出了非对称离散高斯分布的深度图像压缩方法。并非优化编解码器或是熵模型,该方法在隐空间借助语义信息和稀疏过程,实现单高斯分布向非对称高斯分布的迁移,以节约码流。相较其他方法,所提方法具有更优的率失真性能,在Kodak数据集上解码的图像更加真实自然。展开更多
时间序列早期分类(ETSC)有两个矛盾的目标:早期性和准确率。分类早期性的实现,总是以牺牲它的准确率为代价。现有基于优化的多变量时间序列(MTS)早期分类方法,虽然在成本函数中考虑了错误分类成本和延迟决策成本,却忽视了MTS数据集样本...时间序列早期分类(ETSC)有两个矛盾的目标:早期性和准确率。分类早期性的实现,总是以牺牲它的准确率为代价。现有基于优化的多变量时间序列(MTS)早期分类方法,虽然在成本函数中考虑了错误分类成本和延迟决策成本,却忽视了MTS数据集样本之间的局部结构对分类性能的影响。针对这个问题,提出一种基于正交局部保持映射(OLPP)和成本优化的MTS早期分类模型(OLPPMOAE)。首先,使用OLPP将MTS样本前缀映射到低维空间,保持原数据集的局部结构;其次,在低维空间训练一组高斯过程(GP)分类器,生成训练集每个时刻的类概率;最后,使用粒子群优化(PSO)算法从这些类概率中学习停止规则中的最优参数。在6个MTS数据集上的实验结果表明,在早期性基本持平的情况下,OLPPMOAE的准确率显著高于基于成本的R1_C_(lr)(stopping Rule and Cost function with regularization term l_(1)and l_(2))模型,平均准确率能够提升11.33%~15.35%,调和均值(HM)能够提升4.71%~9.01%。因此,所提模型能够以较高的准确率尽早地分类MTS。展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 60972106the China Postdoctoral Science Foundation under Grant No 2014M561053+1 种基金the Humanity and Social Science Foundation of Ministry of Education of China under Grant No 15YJA630108the Hebei Province Natural Science Foundation under Grant No E2016202341
文摘The contribution of this work is twofold: (1) a multimodality prediction method of chaotic time series with the Gaussian process mixture (GPM) model is proposed, which employs a divide and conquer strategy. It automatically divides the chaotic time series into multiple modalities with different extrinsic patterns and intrinsic characteristics, and thus can more precisely fit the chaotic time series. (2) An effective sparse hard-cut expec- tation maximization (SHC-EM) learning algorithm for the GPM model is proposed to improve the prediction performance. SHO-EM replaces a large learning sample set with fewer pseudo inputs, accelerating model learning based on these pseudo inputs. Experiments on Lorenz and Chua time series demonstrate that the proposed method yields not only accurate multimodality prediction, but also the prediction confidence interval SHC-EM outperforms the traditional variational 1earning in terms of both prediction accuracy and speed. In addition, SHC-EM is more robust and insusceptible to noise than variational learning.
文摘A novel model named Multi-scale Gaussian Processes (MGP) is proposed. Motivated by the ideas of multi-scale representations in the wavelet theory, in the new model, a Gaussian process is represented at a scale by a linear basis that is composed of a scale function and its different translations. Finally the distribution of the targets of the given samples can be obtained at different scales. Compared with the standard Gaussian Processes (GP) model, the MGP model can control its complexity conveniently just by adjusting the scale pa-rameter. So it can trade-off the generalization ability and the empirical risk rapidly. Experiments verify the fea-sibility of the MGP model, and exhibit that its performance is superior to the GP model if appropriate scales are chosen.
基金The authors would like to thank the research group that took part in the study for their generous cooperation. Project 50965003 supported by National Natural Science Foundation of China.
基金Project (No. 2002AA412010) supported by the National High-TechResearch and Development Program (863) of China
文摘It has long been thought that bioprocess, with their inherent measurement difficulties and complex dynamics, posed almost insurmountable problems to engineers. A novel software sensor is proposed to make more effective use of those meas- urements that are already available, which enable improvement in fermentation process control. The proposed method is based on mixtures of Gaussian processes (GP) with expectation maximization (EM) algorithm employed for parameter estimation of mixture of models. The mixture model can alleviate computational complexity of GP and also accord with changes of operating condition in fermentation processes, i.e., it would certainly be able to examine what types of process-knowledge would be most relevant for local models’ specific operating points of the process and then combine them into a global one. Demonstrated by on-line estimate of yeast concentration in fermentation industry as an example, it is shown that soft sensor based state estimation is a powerful technique for both enhancing automatic control performance of biological systems and implementing on-line moni- toring and optimization.
文摘相较于传统的图像压缩技术,深度图像压缩可以提供更优的率失真性能,甚至可以超越最新的压缩编码标准多功能视频编码(Versatile Video Coding,VVC)。然而,随着网络复杂度的提升,深度图像压缩技术的提升亦有瓶颈。因此,提出了非对称离散高斯分布的深度图像压缩方法。并非优化编解码器或是熵模型,该方法在隐空间借助语义信息和稀疏过程,实现单高斯分布向非对称高斯分布的迁移,以节约码流。相较其他方法,所提方法具有更优的率失真性能,在Kodak数据集上解码的图像更加真实自然。
文摘时间序列早期分类(ETSC)有两个矛盾的目标:早期性和准确率。分类早期性的实现,总是以牺牲它的准确率为代价。现有基于优化的多变量时间序列(MTS)早期分类方法,虽然在成本函数中考虑了错误分类成本和延迟决策成本,却忽视了MTS数据集样本之间的局部结构对分类性能的影响。针对这个问题,提出一种基于正交局部保持映射(OLPP)和成本优化的MTS早期分类模型(OLPPMOAE)。首先,使用OLPP将MTS样本前缀映射到低维空间,保持原数据集的局部结构;其次,在低维空间训练一组高斯过程(GP)分类器,生成训练集每个时刻的类概率;最后,使用粒子群优化(PSO)算法从这些类概率中学习停止规则中的最优参数。在6个MTS数据集上的实验结果表明,在早期性基本持平的情况下,OLPPMOAE的准确率显著高于基于成本的R1_C_(lr)(stopping Rule and Cost function with regularization term l_(1)and l_(2))模型,平均准确率能够提升11.33%~15.35%,调和均值(HM)能够提升4.71%~9.01%。因此,所提模型能够以较高的准确率尽早地分类MTS。
文摘偏航角零点漂移严重影响风电机组性能,将之消除的前提是对其进行可靠且快速的检测。基于风能捕获机理,该文提出一种运用机器学习算法的偏航角零点漂移诊断方法。首先,采用孤立森林(isolated forest,IF)异常值检测算法对数据进行预处理;其次,建立非参数模型稀疏高斯过程回归(sparse Gaussian process regression,SGPR)估计偏航角零点漂移;最后,利用多个风电场的风电机组实际运行数据对所提方法进行验证,并分析不同诊断模型对数据量的依赖性。结果表明:IF+SGPR方法准确性高,所需数据量少,能够快速诊断偏航角零点漂移;该诊断方法能够应用于各种电场不同型号的风电机组,普适性较高。