This paper reviews the adaptive sparse grid discontinuous Galerkin(aSG-DG)method for computing high dimensional partial differential equations(PDEs)and its software implementation.The C++software package called AdaM-D...This paper reviews the adaptive sparse grid discontinuous Galerkin(aSG-DG)method for computing high dimensional partial differential equations(PDEs)and its software implementation.The C++software package called AdaM-DG,implementing the aSG-DG method,is available on GitHub at https://github.com/JuntaoHuang/adaptive-multiresolution-DG.The package is capable of treating a large class of high dimensional linear and nonlinear PDEs.We review the essential components of the algorithm and the functionality of the software,including the multiwavelets used,assembling of bilinear operators,fast matrix-vector product for data with hierarchical structures.We further demonstrate the performance of the package by reporting the numerical error and the CPU cost for several benchmark tests,including linear transport equations,wave equations,and Hamilton-Jacobi(HJ)equations.展开更多
This paper deals with the blind separation of nonstation-ary sources and direction-of-arrival (DOA) estimation in the under-determined case, when there are more sources than sensors. We assume the sources to be time...This paper deals with the blind separation of nonstation-ary sources and direction-of-arrival (DOA) estimation in the under-determined case, when there are more sources than sensors. We assume the sources to be time-frequency (TF) disjoint to a certain extent. In particular, the number of sources presented at any TF neighborhood is strictly less than that of sensors. We can identify the real number of active sources and achieve separation in any TF neighborhood by the sparse representation method. Compared with the subspace-based algorithm under the same sparseness assumption, which suffers from the extra noise effect since it can-not estimate the true number of active sources, the proposed algorithm can estimate the number of active sources and their cor-responding TF values in any TF neighborhood simultaneously. An-other contribution of this paper is a new estimation procedure for the DOA of sources in the underdetermined case, which combines the TF sparseness of sources and the clustering technique. Sim-ulation results demonstrate the validity and high performance of the proposed algorithm in both blind source separation (BSS) and DOA estimation.展开更多
Recently,robust sparse coding achieves high recognition rates on face recognition( FR),even when dealing with occluded images. However,robust sparse coding is that the coefficients are guaranteed global sparse when so...Recently,robust sparse coding achieves high recognition rates on face recognition( FR),even when dealing with occluded images. However,robust sparse coding is that the coefficients are guaranteed global sparse when solving the sparse coefficients. In this paper,the coefficient vector is divided into multiple regions. Then,the elements in the object region are enabled to approximate global maximum by adding two constraint conditions( the maximal element of coefficient vector is in the object region; the sum of elements in the object region is the maximum value among all regions),which makes the distribution of sparse coefficient adapt to different classes of testing images. The efficacy of the proposed approach is verified on publicly available databases( i. e.,AR and Extended Yale B).Furthermore, the proposed method still can achieve a good performance when the training samples are limited.展开更多
The problem of two-dimensional direction finding is approached by using a multi-layer Lshaped array. The proposed method is based on two sequential sparse representations,fulfilling respectively the estimation of elev...The problem of two-dimensional direction finding is approached by using a multi-layer Lshaped array. The proposed method is based on two sequential sparse representations,fulfilling respectively the estimation of elevation angles,and azimuth angles. For the estimation of elevation angles,the weighted sub-array smoothing technique for perfect data decorrelation is used to produce a covariance vector suitable for exact sparse representation,related only to the elevation angles. The estimates of elevation angles are then obtained by sparse restoration associated with this elevation angle dependent covariance vector. The estimates of elevation angles are further incorporated with weighted sub-array smoothing to yield a second covariance vector for precise sparse representation related to both elevation angles,and azimuth angles. The estimates of azimuth angles,automatically paired with the estimates of elevation angles,are finally obtained by sparse restoration associated with this latter elevation-azimuth angle related covariance vector. Simulation results are included to illustrate the performance of the proposed method.展开更多
Compressed sensing(CS) has achieved great success in single noise removal. However, it cannot restore the images contaminated with mixed noise efficiently. This paper introduces nonlocal similarity and cosparsity insp...Compressed sensing(CS) has achieved great success in single noise removal. However, it cannot restore the images contaminated with mixed noise efficiently. This paper introduces nonlocal similarity and cosparsity inspired by compressed sensing to overcome the difficulties in mixed noise removal, in which nonlocal similarity explores the signal sparsity from similar patches, and cosparsity assumes that the signal is sparse after a possibly redundant transform. Meanwhile, an adaptive scheme is designed to keep the balance between mixed noise removal and detail preservation based on local variance. Finally, IRLSM and RACoSaMP are adopted to solve the objective function. Experimental results demonstrate that the proposed method is superior to conventional CS methods, like K-SVD and state-of-art method nonlocally centralized sparse representation(NCSR), in terms of both visual results and quantitative measures.展开更多
This Letter presents a novel approach to enhance the fringe contrast(visibility) in a digital off-axis hologram digitally, which can save several adjustment procedures. In the approach, we train a pair of coupled di...This Letter presents a novel approach to enhance the fringe contrast(visibility) in a digital off-axis hologram digitally, which can save several adjustment procedures. In the approach, we train a pair of coupled dictionaries from a low fringe contrast hologram and a high one of the same specimen, use the dictionaries to sparse code the input hologram, and finally output a higher fringe contrast hologram. The sparse representation shows good adaptability on holograms. The experimental results demonstrate the benefit of low noise in a three-dimensional profile and prove the effectiveness of the approach.展开更多
基金supported by the NSF grant DMS-2111383Air Force Office of Scientific Research FA9550-18-1-0257the NSF grant DMS-2011838.
文摘This paper reviews the adaptive sparse grid discontinuous Galerkin(aSG-DG)method for computing high dimensional partial differential equations(PDEs)and its software implementation.The C++software package called AdaM-DG,implementing the aSG-DG method,is available on GitHub at https://github.com/JuntaoHuang/adaptive-multiresolution-DG.The package is capable of treating a large class of high dimensional linear and nonlinear PDEs.We review the essential components of the algorithm and the functionality of the software,including the multiwavelets used,assembling of bilinear operators,fast matrix-vector product for data with hierarchical structures.We further demonstrate the performance of the package by reporting the numerical error and the CPU cost for several benchmark tests,including linear transport equations,wave equations,and Hamilton-Jacobi(HJ)equations.
基金supported by the National Natural Science Foundation of China(61072120)
文摘This paper deals with the blind separation of nonstation-ary sources and direction-of-arrival (DOA) estimation in the under-determined case, when there are more sources than sensors. We assume the sources to be time-frequency (TF) disjoint to a certain extent. In particular, the number of sources presented at any TF neighborhood is strictly less than that of sensors. We can identify the real number of active sources and achieve separation in any TF neighborhood by the sparse representation method. Compared with the subspace-based algorithm under the same sparseness assumption, which suffers from the extra noise effect since it can-not estimate the true number of active sources, the proposed algorithm can estimate the number of active sources and their cor-responding TF values in any TF neighborhood simultaneously. An-other contribution of this paper is a new estimation procedure for the DOA of sources in the underdetermined case, which combines the TF sparseness of sources and the clustering technique. Sim-ulation results demonstrate the validity and high performance of the proposed algorithm in both blind source separation (BSS) and DOA estimation.
基金National Natural Science Foundations of China(Nos.61171077,61401239)Natural Science Foundation of Jiangsu Province,China(No.BK20130393)+1 种基金the Science and Technology Program of Nantong,China(Nos.BK2014063,BK2014066)Natural Sciences and Engineering Research Council of Canada
文摘Recently,robust sparse coding achieves high recognition rates on face recognition( FR),even when dealing with occluded images. However,robust sparse coding is that the coefficients are guaranteed global sparse when solving the sparse coefficients. In this paper,the coefficient vector is divided into multiple regions. Then,the elements in the object region are enabled to approximate global maximum by adding two constraint conditions( the maximal element of coefficient vector is in the object region; the sum of elements in the object region is the maximum value among all regions),which makes the distribution of sparse coefficient adapt to different classes of testing images. The efficacy of the proposed approach is verified on publicly available databases( i. e.,AR and Extended Yale B).Furthermore, the proposed method still can achieve a good performance when the training samples are limited.
基金Supported by the National Natural Science Foundation of China(61331019,61490691)
文摘The problem of two-dimensional direction finding is approached by using a multi-layer Lshaped array. The proposed method is based on two sequential sparse representations,fulfilling respectively the estimation of elevation angles,and azimuth angles. For the estimation of elevation angles,the weighted sub-array smoothing technique for perfect data decorrelation is used to produce a covariance vector suitable for exact sparse representation,related only to the elevation angles. The estimates of elevation angles are then obtained by sparse restoration associated with this elevation angle dependent covariance vector. The estimates of elevation angles are further incorporated with weighted sub-array smoothing to yield a second covariance vector for precise sparse representation related to both elevation angles,and azimuth angles. The estimates of azimuth angles,automatically paired with the estimates of elevation angles,are finally obtained by sparse restoration associated with this latter elevation-azimuth angle related covariance vector. Simulation results are included to illustrate the performance of the proposed method.
基金supported by the National Natural Science Foundation of China(Nos.61403146 and 61603105)the Fundamental Research Funds for the Central Universities(No.2015ZM128)the Science and Technology Program of Guangzhou in China(Nos.201707010054 and 201704030072)
文摘Compressed sensing(CS) has achieved great success in single noise removal. However, it cannot restore the images contaminated with mixed noise efficiently. This paper introduces nonlocal similarity and cosparsity inspired by compressed sensing to overcome the difficulties in mixed noise removal, in which nonlocal similarity explores the signal sparsity from similar patches, and cosparsity assumes that the signal is sparse after a possibly redundant transform. Meanwhile, an adaptive scheme is designed to keep the balance between mixed noise removal and detail preservation based on local variance. Finally, IRLSM and RACoSaMP are adopted to solve the objective function. Experimental results demonstrate that the proposed method is superior to conventional CS methods, like K-SVD and state-of-art method nonlocally centralized sparse representation(NCSR), in terms of both visual results and quantitative measures.
文摘This Letter presents a novel approach to enhance the fringe contrast(visibility) in a digital off-axis hologram digitally, which can save several adjustment procedures. In the approach, we train a pair of coupled dictionaries from a low fringe contrast hologram and a high one of the same specimen, use the dictionaries to sparse code the input hologram, and finally output a higher fringe contrast hologram. The sparse representation shows good adaptability on holograms. The experimental results demonstrate the benefit of low noise in a three-dimensional profile and prove the effectiveness of the approach.