期刊文献+
共找到819篇文章
< 1 2 41 >
每页显示 20 50 100
SRMD:Sparse Random Mode Decomposition
1
作者 Nicholas Richardson Hayden Schaeffer Giang Tran 《Communications on Applied Mathematics and Computation》 EI 2024年第2期879-906,共28页
Signal decomposition and multiscale signal analysis provide many useful tools for timefrequency analysis.We proposed a random feature method for analyzing time-series data by constructing a sparse approximation to the... Signal decomposition and multiscale signal analysis provide many useful tools for timefrequency analysis.We proposed a random feature method for analyzing time-series data by constructing a sparse approximation to the spectrogram.The randomization is both in the time window locations and the frequency sampling,which lowers the overall sampling and computational cost.The sparsification of the spectrogram leads to a sharp separation between time-frequency clusters which makes it easier to identify intrinsic modes,and thus leads to a new data-driven mode decomposition.The applications include signal representation,outlier removal,and mode decomposition.On benchmark tests,we show that our approach outperforms other state-of-the-art decomposition methods. 展开更多
关键词 sparse random features Signal decomposition Short-time Fourier transform
下载PDF
Application of sparse time-frequency decomposition to seismic data 被引量:3
2
作者 王雄文 王华忠 《Applied Geophysics》 SCIE CSCD 2014年第4期447-458,510,共13页
The Gabor and S transforms are frequently used in time-frequency decomposition methods. Constrained by the uncertainty principle, both transforms produce low-resolution time-frequency decomposition results in the time... The Gabor and S transforms are frequently used in time-frequency decomposition methods. Constrained by the uncertainty principle, both transforms produce low-resolution time-frequency decomposition results in the time and frequency domains. To improve the resolution of the time-frequency decomposition results, we use the instantaneous frequency distribution function(IFDF) to express the seismic signal. When the instantaneous frequencies of the nonstationary signal satisfy the requirements of the uncertainty principle, the support of IFDF is just the support of the amplitude ridges in the signal obtained using the short-time Fourier transform. Based on this feature, we propose a new iteration algorithm to achieve the sparse time-frequency decomposition of the signal. The iteration algorithm uses the support of the amplitude ridges of the residual signal obtained with the short-time Fourier transform to update the time-frequency components of the signal. The summation of the updated time-frequency components in each iteration is the result of the sparse timefrequency decomposition. Numerical examples show that the proposed method improves the resolution of the time-frequency decomposition results and the accuracy of the analysis of the nonstationary signal. We also use the proposed method to attenuate the ground roll of field seismic data with good results. 展开更多
关键词 Time-frequency analysis sparse time-frequency decomposition nonstationary signal RESOLUTION
下载PDF
Gearbox Fault Diagnosis using Adaptive Zero Phase Time-varying Filter Based on Multi-scale Chirplet Sparse Signal Decomposition 被引量:16
3
作者 WU Chunyan LIU Jian +2 位作者 PENG Fuqiang YU Dejie LI Rong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第4期831-838,共8页
When used for separating multi-component non-stationary signals, the adaptive time-varying filter(ATF) based on multi-scale chirplet sparse signal decomposition(MCSSD) generates phase shift and signal distortion. To o... When used for separating multi-component non-stationary signals, the adaptive time-varying filter(ATF) based on multi-scale chirplet sparse signal decomposition(MCSSD) generates phase shift and signal distortion. To overcome this drawback, the zero phase filter is introduced to the mentioned filter, and a fault diagnosis method for speed-changing gearbox is proposed. Firstly, the gear meshing frequency of each gearbox is estimated by chirplet path pursuit. Then, according to the estimated gear meshing frequencies, an adaptive zero phase time-varying filter(AZPTF) is designed to filter the original signal. Finally, the basis for fault diagnosis is acquired by the envelope order analysis to the filtered signal. The signal consisting of two time-varying amplitude modulation and frequency modulation(AM-FM) signals is respectively analyzed by ATF and AZPTF based on MCSSD. The simulation results show the variances between the original signals and the filtered signals yielded by AZPTF based on MCSSD are 13.67 and 41.14, which are far less than variances (323.45 and 482.86) between the original signals and the filtered signals obtained by ATF based on MCSSD. The experiment results on the vibration signals of gearboxes indicate that the vibration signals of the two speed-changing gearboxes installed on one foundation bed can be separated by AZPTF effectively. Based on the demodulation information of the vibration signal of each gearbox, the fault diagnosis can be implemented. Both simulation and experiment examples prove that the proposed filter can extract a mono-component time-varying AM-FM signal from the multi-component time-varying AM-FM signal without distortion. 展开更多
关键词 zero phase time-varying filter MULTI-SCALE CHIRPLET sparse signal decomposition speed-changing gearbox fault diagnosis
下载PDF
Low-Rank Multi-View Subspace Clustering Based on Sparse Regularization
4
作者 Yan Sun Fanlong Zhang 《Journal of Computer and Communications》 2024年第4期14-30,共17页
Multi-view Subspace Clustering (MVSC) emerges as an advanced clustering method, designed to integrate diverse views to uncover a common subspace, enhancing the accuracy and robustness of clustering results. The signif... Multi-view Subspace Clustering (MVSC) emerges as an advanced clustering method, designed to integrate diverse views to uncover a common subspace, enhancing the accuracy and robustness of clustering results. The significance of low-rank prior in MVSC is emphasized, highlighting its role in capturing the global data structure across views for improved performance. However, it faces challenges with outlier sensitivity due to its reliance on the Frobenius norm for error measurement. Addressing this, our paper proposes a Low-Rank Multi-view Subspace Clustering Based on Sparse Regularization (LMVSC- Sparse) approach. Sparse regularization helps in selecting the most relevant features or views for clustering while ignoring irrelevant or noisy ones. This leads to a more efficient and effective representation of the data, improving the clustering accuracy and robustness, especially in the presence of outliers or noisy data. By incorporating sparse regularization, LMVSC-Sparse can effectively handle outlier sensitivity, which is a common challenge in traditional MVSC methods relying solely on low-rank priors. Then Alternating Direction Method of Multipliers (ADMM) algorithm is employed to solve the proposed optimization problems. Our comprehensive experiments demonstrate the efficiency and effectiveness of LMVSC-Sparse, offering a robust alternative to traditional MVSC methods. 展开更多
关键词 CLUSTERING Multi-View Subspace Clustering low-rank Prior sparse Regularization
下载PDF
Robust Principal Component Analysis Integrating Sparse and Low-Rank Priors
5
作者 Wei Zhai Fanlong Zhang 《Journal of Computer and Communications》 2024年第4期1-13,共13页
Principal Component Analysis (PCA) is a widely used technique for data analysis and dimensionality reduction, but its sensitivity to feature scale and outliers limits its applicability. Robust Principal Component Anal... Principal Component Analysis (PCA) is a widely used technique for data analysis and dimensionality reduction, but its sensitivity to feature scale and outliers limits its applicability. Robust Principal Component Analysis (RPCA) addresses these limitations by decomposing data into a low-rank matrix capturing the underlying structure and a sparse matrix identifying outliers, enhancing robustness against noise and outliers. This paper introduces a novel RPCA variant, Robust PCA Integrating Sparse and Low-rank Priors (RPCA-SL). Each prior targets a specific aspect of the data’s underlying structure and their combination allows for a more nuanced and accurate separation of the main data components from outliers and noise. Then RPCA-SL is solved by employing a proximal gradient algorithm for improved anomaly detection and data decomposition. Experimental results on simulation and real data demonstrate significant advancements. 展开更多
关键词 Robust Principal Component Analysis sparse Matrix low-rank Matrix Hyperspectral Image
下载PDF
Application of Atomic Sparse Decomposition to Feature Extraction of the Fault Signal in Small Current Grounding System 被引量:1
6
作者 Nanhua Yu Rui Li +1 位作者 Jun Yang Bei Dong 《Energy and Power Engineering》 2013年第4期603-607,共5页
Applying the atomic sparse decomposition in the distribution network with harmonics and small current grounding to decompose the transient zero sequence current that appears after the single phase to ground fault occu... Applying the atomic sparse decomposition in the distribution network with harmonics and small current grounding to decompose the transient zero sequence current that appears after the single phase to ground fault occurred. Based on dictionary of Gabor atoms and matching pursuit algorithm, the method extracts the atomic components iteratively from the feature signals and translated them to damped sinusoidal components. Then we can obtain the parametrical and analytical representation of atomic components. The termination condition of decomposing iteration is determined by the threshold of the initial residual energy with the purpose of extract the features more effectively. Accordingly, the proposed method can extract the starting and ending moment of disturbances precisely as well as their magnitudes, frequencies and other features. The numerical examples demonstrate its effectiveness. 展开更多
关键词 Small Current GROUNDING System Fault Line Selection ATOMIC sparse decomposition Matching PURSUIT DAMPED SINUSOIDS
下载PDF
A bearing fault diagnosis method based on sparse decomposition theory 被引量:1
7
作者 张新鹏 胡茑庆 +1 位作者 胡雷 陈凌 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第8期1961-1969,共9页
The bearing fault information is often interfered or lost in the background noise after the vibration signal being transferred complicatedly, which will make it very difficult to extract fault features from the vibrat... The bearing fault information is often interfered or lost in the background noise after the vibration signal being transferred complicatedly, which will make it very difficult to extract fault features from the vibration signals. To avoid the problem in choosing and extracting the fault features in bearing fault diagnosing, a novelty fault diagnosis method based on sparse decomposition theory is proposed. Certain over-complete dictionaries are obtained by training, on which the bearing vibration signals corresponded to different states can be decomposed sparsely. The fault detection and state identification can be achieved based on the fact that the sparse representation errors of the signal on different dictionaries are different. The effects of the representation error threshold and the number of dictionary atoms used in signal decomposition to the fault diagnosis are analyzed. The effectiveness of the proposed method is validated with experimental bearing vibration signals. 展开更多
关键词 fault diagnosis sparse decomposition dictionary learning representation error
下载PDF
Physics-informed neural network-based petroleum reservoir simulation with sparse data using domain decomposition 被引量:1
8
作者 Jiang-Xia Han Liang Xue +4 位作者 Yun-Sheng Wei Ya-Dong Qi Jun-Lei Wang Yue-Tian Liu Yu-Qi Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3450-3460,共11页
Recent advances in deep learning have expanded new possibilities for fluid flow simulation in petroleum reservoirs.However,the predominant approach in existing research is to train neural networks using high-fidelity ... Recent advances in deep learning have expanded new possibilities for fluid flow simulation in petroleum reservoirs.However,the predominant approach in existing research is to train neural networks using high-fidelity numerical simulation data.This presents a significant challenge because the sole source of authentic wellbore production data for training is sparse.In response to this challenge,this work introduces a novel architecture called physics-informed neural network based on domain decomposition(PINN-DD),aiming to effectively utilize the sparse production data of wells for reservoir simulation with large-scale systems.To harness the capabilities of physics-informed neural networks(PINNs)in handling small-scale spatial-temporal domain while addressing the challenges of large-scale systems with sparse labeled data,the computational domain is divided into two distinct sub-domains:the well-containing and the well-free sub-domain.Moreover,the two sub-domains and the interface are rigorously constrained by the governing equations,data matching,and boundary conditions.The accuracy of the proposed method is evaluated on two problems,and its performance is compared against state-of-the-art PINNs through numerical analysis as a benchmark.The results demonstrate the superiority of PINN-DD in handling large-scale reservoir simulation with limited data and show its potential to outperform conventional PINNs in such scenarios. 展开更多
关键词 Physical-informed neural networks Fluid flow simulation sparse data Domain decomposition
下载PDF
Denoising via truncated sparse decomposition
9
作者 谢宗伯 冯久超 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第5期159-162,共4页
This paper proposes a denoising algorithm called truncated sparse decomposition (TSD) algorithm, which combines the advantage of the sparse decomposition with that of the minimum energy model truncation operation. E... This paper proposes a denoising algorithm called truncated sparse decomposition (TSD) algorithm, which combines the advantage of the sparse decomposition with that of the minimum energy model truncation operation. Experimental results on two real chaotic signals show that the TSD algorithm outperforms the recently reported denoising algorithmsnon-negative sparse coding and singular value decomposition based method. 展开更多
关键词 DENOISING truncated sparse decomposition sparse decomposition chaotic signals
下载PDF
Chaotic signal denoising algorithm based on sparse decomposition
10
作者 Jin-Wang Huang Shan-Xiang Lv +1 位作者 Zu-Sheng Zhang Hua-Qiang Yuan 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第6期133-138,共6页
Denoising of chaotic signal is a challenge work due to its wide-band and noise-like characteristics.The algorithm should make the denoised signal have a high signal to noise ratio and retain the chaotic characteristic... Denoising of chaotic signal is a challenge work due to its wide-band and noise-like characteristics.The algorithm should make the denoised signal have a high signal to noise ratio and retain the chaotic characteristics.We propose a denoising method of chaotic signals based on sparse decomposition and K-singular value decomposition(K-SVD)optimization.The observed signal is divided into segments and decomposed sparsely.The over-complete atomic library is constructed according to the differential equation of chaotic signals.The orthogonal matching pursuit algorithm is used to search the optimal matching atom.The atoms and coefficients are further processed to obtain the globally optimal atoms and coefficients by K-SVD.The simulation results show that the denoised signals have a higher signal to noise ratio and better preserve the chaotic characteristics. 展开更多
关键词 sparse decomposition DENOISING K-SVD chaotic signal
下载PDF
Application of signal sparse decomposition in dynamic test
11
作者 轩志伟 轩春青 陈保立 《Journal of Measurement Science and Instrumentation》 CAS 2013年第3期243-246,共4页
In dynamic test,sampling rate is high and noise is strong,so a signal sparse decomposition method based on Gabor dictionary is put forward.This method iteratively decomposes the signal with the matching pursuit(MP)alg... In dynamic test,sampling rate is high and noise is strong,so a signal sparse decomposition method based on Gabor dictionary is put forward.This method iteratively decomposes the signal with the matching pursuit(MP)algorithm and takes the coherence ratio of the threshold as a condition of iteration termination.Standard MP algorithm is time-consuming,thus an adaptive genetic algorithm is introduced to MP method,which makes computation speed accelerate effectively.Experimental results indicate that this method not only can effectively remove high-frequency noise but also can compress the signal greatly. 展开更多
关键词 dynamic test sparse decomposition matching pursuit (MP) algorithm DENOISING compressionCLC number:TN911.72 Document code:AArticle ID:1674-8042(2013)03-0243-04
下载PDF
Low-Rank and Sparse Representation with Adaptive Neighborhood Regularization for Hyperspectral Image Classification 被引量:7
12
作者 Zhaohui XUE Xiangyu NIE 《Journal of Geodesy and Geoinformation Science》 2022年第1期73-90,共18页
Low-Rank and Sparse Representation(LRSR)method has gained popularity in Hyperspectral Image(HSI)processing.However,existing LRSR models rarely exploited spectral-spatial classification of HSI.In this paper,we proposed... Low-Rank and Sparse Representation(LRSR)method has gained popularity in Hyperspectral Image(HSI)processing.However,existing LRSR models rarely exploited spectral-spatial classification of HSI.In this paper,we proposed a novel Low-Rank and Sparse Representation with Adaptive Neighborhood Regularization(LRSR-ANR)method for HSI classification.In the proposed method,we first represent the hyperspectral data via LRSR since it combines both sparsity and low-rankness to maintain global and local data structures simultaneously.The LRSR is optimized by using a mixed Gauss-Seidel and Jacobian Alternating Direction Method of Multipliers(M-ADMM),which converges faster than ADMM.Then to incorporate the spatial information,an ANR scheme is designed by combining Euclidean and Cosine distance metrics to reduce the mixed pixels within a neighborhood.Lastly,the predicted labels are determined by jointly considering the homogeneous pixels in the classification rule of the minimum reconstruction error.Experimental results based on three popular hyperspectral images demonstrate that the proposed method outperforms other related methods in terms of classification accuracy and generalization performance. 展开更多
关键词 Hyperspectral Image(HSI) spectral-spatial classification low-rank and sparse Representation(LRSR) Adaptive Neighborhood Regularization(ANR)
下载PDF
Proximity point algorithm for low-rank matrix recovery from sparse noise corrupted data
13
作者 朱玮 舒适 成礼智 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第2期259-268,共10页
The method of recovering a low-rank matrix with an unknown fraction whose entries are arbitrarily corrupted is known as the robust principal component analysis (RPCA). This RPCA problem, under some conditions, can b... The method of recovering a low-rank matrix with an unknown fraction whose entries are arbitrarily corrupted is known as the robust principal component analysis (RPCA). This RPCA problem, under some conditions, can be exactly solved via convex optimization by minimizing a combination of the nuclear norm and the 11 norm. In this paper, an algorithm based on the Douglas-Rachford splitting method is proposed for solving the RPCA problem. First, the convex optimization problem is solved by canceling the constraint of the variables, and ~hen the proximity operators of the objective function are computed alternately. The new algorithm can exactly recover the low-rank and sparse components simultaneously, and it is proved to be convergent. Numerical simulations demonstrate the practical utility of the proposed algorithm. 展开更多
关键词 low-rank matrix recovery sparse noise Douglas-Rachford splitting method proximity operator
下载PDF
Low-Rank Sparse Representation with Pre-Learned Dictionaries and Side Information for Singing Voice Separation
14
作者 Chenghong Yang Hongjuan Zhang 《Advances in Pure Mathematics》 2018年第4期419-427,共9页
At present, although the human speech separation has achieved fruitful results, it is not ideal for the separation of singing and accompaniment. Based on low-rank and sparse optimization theory, in this paper, we prop... At present, although the human speech separation has achieved fruitful results, it is not ideal for the separation of singing and accompaniment. Based on low-rank and sparse optimization theory, in this paper, we propose a new singing voice separation algorithm called Low-rank, Sparse Representation with pre-learned dictionaries and side Information (LSRi). The algorithm incorporates both the vocal and instrumental spectrograms as sparse matrix and low-rank matrix, meanwhile combines pre-learning dictionary and the reconstructed voice spectrogram form the annotation. Evaluations on the iKala dataset show that the proposed methods are effective and efficient for singing voice separation. 展开更多
关键词 SINGING VOICE SEPARATION low-rank and sparse DICTIONARY Learning
下载PDF
Balance Sparse Decomposition Method with Nonconvex Regularization for Gearbox Fault Diagnosis
15
作者 Weiguo Huang Jun Wang +2 位作者 Guifu Du Shuyou Wu Zhongkui Zhu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS 2024年第5期258-271,共14页
As an important part of rotating machinery,gearboxes often fail due to their complex working conditions and harsh working environment.Therefore,it is very necessary to effectively extract the fault features of the gea... As an important part of rotating machinery,gearboxes often fail due to their complex working conditions and harsh working environment.Therefore,it is very necessary to effectively extract the fault features of the gearboxes.Gearbox fault signals usually contain multiple characteristic components and are accompanied by strong noise interference.Traditional sparse modeling methods are based on synthesis models,and there are few studies on analysis and balance models.In this paper,a balance nonconvex regularized sparse decomposition method is proposed,which based on a balance model and an arctangent nonconvex penalty function.The sparse dictionary is constructed by using Tunable Q-Factor Wavelet Transform(TQWT)that satisfies the tight frame condition,which can achieve efficient and fast solution.It is optimized and solved by alternating direction method of multipliers(ADMM)algorithm,and the non-convex regularized sparse decomposition algorithm of synthetic and analytical models are given.Through simulation experiments,the determination methods of regularization parameters and balance parameters are given,and compared with the L1 norm regularization sparse decomposition method under the three models.Simulation analysis and engineering experimental signal analysis verify the effectiveness and superiority of the proposed method. 展开更多
关键词 Gearbox fault diagnosis Balance model sparse decomposition Non-convex regularization
下载PDF
Weighted Sparse Image Classification Based on Low Rank Representation 被引量:5
16
作者 Qidi Wu Yibing Li +1 位作者 Yun Lin Ruolin Zhou 《Computers, Materials & Continua》 SCIE EI 2018年第7期91-105,共15页
The conventional sparse representation-based image classification usually codes the samples independently,which will ignore the correlation information existed in the data.Hence,if we can explore the correlation infor... The conventional sparse representation-based image classification usually codes the samples independently,which will ignore the correlation information existed in the data.Hence,if we can explore the correlation information hidden in the data,the classification result will be improved significantly.To this end,in this paper,a novel weighted supervised spare coding method is proposed to address the image classification problem.The proposed method firstly explores the structural information sufficiently hidden in the data based on the low rank representation.And then,it introduced the extracted structural information to a novel weighted sparse representation model to code the samples in a supervised way.Experimental results show that the proposed method is superiority to many conventional image classification methods. 展开更多
关键词 Image classification sparse representation low-rank representation numerical optimization.
下载PDF
DOA ESTIMATION USING A SPARSE LINEAR MODEL BASED ON EIGENVECTORS 被引量:2
17
作者 Wang Libin Cui Chen Li Pengfei 《Journal of Electronics(China)》 2011年第4期496-502,共7页
To reduce high computational cost of existing Direction-Of-Arrival(DOA) estimation techniques within a sparse representation framework,a novel method with low computational com-plexity is proposed.Firstly,a sparse lin... To reduce high computational cost of existing Direction-Of-Arrival(DOA) estimation techniques within a sparse representation framework,a novel method with low computational com-plexity is proposed.Firstly,a sparse linear model constructed from the eigenvectors of covariance matrix of array received signals is built.Then based on the FOCal Underdetermined System Solver(FOCUSS) algorithm,a sparse solution finding algorithm to solve the model is developed.Compared with other state-of-the-art methods using a sparse representation,our approach also can resolve closely and highly correlated sources without a priori knowledge of the number of sources.However,our method has lower computational complexity and performs better in low Signal-to-Noise Ratio(SNR).Lastly,the performance of the proposed method is illustrated by computer simulations. 展开更多
关键词 Direction-Of-Arrival(DOA) estimation sparse linear model Eigen-value decomposition sparse solution finding
下载PDF
Truncated sparse approximation property and truncated q-norm minimization 被引量:1
18
作者 CHEN Wen-gu LI Peng 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2019年第3期261-283,共23页
This paper considers approximately sparse signal and low-rank matrix’s recovery via truncated norm minimization minx∥xT∥q and minX∥XT∥Sq from noisy measurements.We first introduce truncated sparse approximation p... This paper considers approximately sparse signal and low-rank matrix’s recovery via truncated norm minimization minx∥xT∥q and minX∥XT∥Sq from noisy measurements.We first introduce truncated sparse approximation property,a more general robust null space property,and establish the stable recovery of signals and matrices under the truncated sparse approximation property.We also explore the relationship between the restricted isometry property and truncated sparse approximation property.And we also prove that if a measurement matrix A or linear map A satisfies truncated sparse approximation property of order k,then the first inequality in restricted isometry property of order k and of order 2k can hold for certain different constantsδk andδ2k,respectively.Last,we show that ifδs(k+|T^c|)<√(s-1)/s for some s≥4/3,then measurement matrix A and linear map A satisfy truncated sparse approximation property of order k.It should be pointed out that when Tc=Ф,our conclusion implies that sparse approximation property of order k is weaker than restricted isometry property of order sk. 展开更多
关键词 TRUNCATED NORM MINIMIZATION TRUNCATED sparse approximation PROPERTY restricted isometry PROPERTY sparse signal RECOVERY low-rank matrix RECOVERY Dantzig selector
下载PDF
A Novel Robust Zero-Watermarking Algorithm for Audio Based on Sparse Representation 被引量:1
19
作者 Longting Xu Daiyu Huang +4 位作者 Xing Guo Wei Rao Yunyun Ji Ruoyi Li Xiaochen Lu 《China Communications》 SCIE CSCD 2021年第8期237-248,共12页
Behind the prevalence of multimedia technology,digital copyright disputes are becoming increasingly serious.The digital watermarking prevention technique against the copyright infringement needs to be improved urgentl... Behind the prevalence of multimedia technology,digital copyright disputes are becoming increasingly serious.The digital watermarking prevention technique against the copyright infringement needs to be improved urgently.Among the proposed technologies,zero-watermarking has been favored recently.In order to improve the robustness of the zero-watermarking,a novel robust audio zerowatermarking method based on sparse representation is proposed.The proposed scheme is mainly based on the K-singular value decomposition(K-SVD)algorithm to construct an optimal over complete dictionary from the background audio signal.After that,the orthogonal matching pursuit(OMP)algorithm is used to calculate the sparse coefficient of the segmented test audio and generate the corresponding sparse coefficient matrix.Then,the mean value of absolute sparse coefficients in the sparse matrix of segmented speech is calculated and selected,and then comparing the mean absolute coefficient of segmented speech with the average value of the selected coefficients to realize the embedding of zero-watermarking.Experimental results show that the proposed audio zerowatermarking algorithm based on sparse representation performs effectively in resisting various common attacks.Compared with the baseline works,the proposed method has better robustness. 展开更多
关键词 ZERO-WATERMARKING K-singular value decomposition dictionary learning sparse representtion
下载PDF
Robust least squares projection twin SVM and its sparse solution 被引量:1
20
作者 ZHOU Shuisheng ZHANG Wenmeng +1 位作者 CHEN Li XU Mingliang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第4期827-838,共12页
Least squares projection twin support vector machine(LSPTSVM)has faster computing speed than classical least squares support vector machine(LSSVM).However,LSPTSVM is sensitive to outliers and its solution lacks sparsi... Least squares projection twin support vector machine(LSPTSVM)has faster computing speed than classical least squares support vector machine(LSSVM).However,LSPTSVM is sensitive to outliers and its solution lacks sparsity.Therefore,it is difficult for LSPTSVM to process large-scale datasets with outliers.In this paper,we propose a robust LSPTSVM model(called R-LSPTSVM)by applying truncated least squares loss function.The robustness of R-LSPTSVM is proved from a weighted perspective.Furthermore,we obtain the sparse solution of R-LSPTSVM by using the pivoting Cholesky factorization method in primal space.Finally,the sparse R-LSPTSVM algorithm(SR-LSPTSVM)is proposed.Experimental results show that SR-LSPTSVM is insensitive to outliers and can deal with large-scale datasets fastly. 展开更多
关键词 OUTLIERS robust least squares projection twin support vector machine(R-LSPTSVM) low-rank approximation sparse solution
下载PDF
上一页 1 2 41 下一页 到第
使用帮助 返回顶部