Multi-view Subspace Clustering (MVSC) emerges as an advanced clustering method, designed to integrate diverse views to uncover a common subspace, enhancing the accuracy and robustness of clustering results. The signif...Multi-view Subspace Clustering (MVSC) emerges as an advanced clustering method, designed to integrate diverse views to uncover a common subspace, enhancing the accuracy and robustness of clustering results. The significance of low-rank prior in MVSC is emphasized, highlighting its role in capturing the global data structure across views for improved performance. However, it faces challenges with outlier sensitivity due to its reliance on the Frobenius norm for error measurement. Addressing this, our paper proposes a Low-Rank Multi-view Subspace Clustering Based on Sparse Regularization (LMVSC- Sparse) approach. Sparse regularization helps in selecting the most relevant features or views for clustering while ignoring irrelevant or noisy ones. This leads to a more efficient and effective representation of the data, improving the clustering accuracy and robustness, especially in the presence of outliers or noisy data. By incorporating sparse regularization, LMVSC-Sparse can effectively handle outlier sensitivity, which is a common challenge in traditional MVSC methods relying solely on low-rank priors. Then Alternating Direction Method of Multipliers (ADMM) algorithm is employed to solve the proposed optimization problems. Our comprehensive experiments demonstrate the efficiency and effectiveness of LMVSC-Sparse, offering a robust alternative to traditional MVSC methods.展开更多
Principal Component Analysis (PCA) is a widely used technique for data analysis and dimensionality reduction, but its sensitivity to feature scale and outliers limits its applicability. Robust Principal Component Anal...Principal Component Analysis (PCA) is a widely used technique for data analysis and dimensionality reduction, but its sensitivity to feature scale and outliers limits its applicability. Robust Principal Component Analysis (RPCA) addresses these limitations by decomposing data into a low-rank matrix capturing the underlying structure and a sparse matrix identifying outliers, enhancing robustness against noise and outliers. This paper introduces a novel RPCA variant, Robust PCA Integrating Sparse and Low-rank Priors (RPCA-SL). Each prior targets a specific aspect of the data’s underlying structure and their combination allows for a more nuanced and accurate separation of the main data components from outliers and noise. Then RPCA-SL is solved by employing a proximal gradient algorithm for improved anomaly detection and data decomposition. Experimental results on simulation and real data demonstrate significant advancements.展开更多
A two-level Bregmanized method with graph regularized sparse coding (TBGSC) is presented for image interpolation. The outer-level Bregman iterative procedure enforces the observation data constraints, while the inne...A two-level Bregmanized method with graph regularized sparse coding (TBGSC) is presented for image interpolation. The outer-level Bregman iterative procedure enforces the observation data constraints, while the inner-level Bregmanized method devotes to dictionary updating and sparse represention of small overlapping image patches. The introduced constraint of graph regularized sparse coding can capture local image features effectively, and consequently enables accurate reconstruction from highly undersampled partial data. Furthermore, modified sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge within a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can effectively reconstruct images and it outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures.展开更多
For quantum sparse graph codes with stabilizer formalism, the unavoidable girth-four cycles in their Tanner graphs greatly degrade the iterative decoding performance with standard belief-propagation (BP) algorithm. ...For quantum sparse graph codes with stabilizer formalism, the unavoidable girth-four cycles in their Tanner graphs greatly degrade the iterative decoding performance with standard belief-propagation (BP) algorithm. In this paper, we present a jointly-check iterative algorithm suitable for decoding quantum sparse graph codes efficiently. Numerical simulations show that this modified method outperforms standard BP algorithm with an obvious performance improvement.展开更多
Low-Rank and Sparse Representation(LRSR)method has gained popularity in Hyperspectral Image(HSI)processing.However,existing LRSR models rarely exploited spectral-spatial classification of HSI.In this paper,we proposed...Low-Rank and Sparse Representation(LRSR)method has gained popularity in Hyperspectral Image(HSI)processing.However,existing LRSR models rarely exploited spectral-spatial classification of HSI.In this paper,we proposed a novel Low-Rank and Sparse Representation with Adaptive Neighborhood Regularization(LRSR-ANR)method for HSI classification.In the proposed method,we first represent the hyperspectral data via LRSR since it combines both sparsity and low-rankness to maintain global and local data structures simultaneously.The LRSR is optimized by using a mixed Gauss-Seidel and Jacobian Alternating Direction Method of Multipliers(M-ADMM),which converges faster than ADMM.Then to incorporate the spatial information,an ANR scheme is designed by combining Euclidean and Cosine distance metrics to reduce the mixed pixels within a neighborhood.Lastly,the predicted labels are determined by jointly considering the homogeneous pixels in the classification rule of the minimum reconstruction error.Experimental results based on three popular hyperspectral images demonstrate that the proposed method outperforms other related methods in terms of classification accuracy and generalization performance.展开更多
The imaging speed is a bottleneck for magnetic resonance imaging( MRI) since it appears. To alleviate this difficulty,a novel graph regularized sparse coding method for highly undersampled MRI reconstruction( GSCMRI) ...The imaging speed is a bottleneck for magnetic resonance imaging( MRI) since it appears. To alleviate this difficulty,a novel graph regularized sparse coding method for highly undersampled MRI reconstruction( GSCMRI) was proposed. The graph regularized sparse coding showed the potential in maintaining the geometrical information of the data. In this study, it was incorporated with two-level Bregman iterative procedure that updated the data term in outer-level and learned dictionary in innerlevel. Moreover,the graph regularized sparse coding and simple dictionary updating stages derived by the inner minimization made the proposed algorithm converge in few iterations, meanwhile achieving superior reconstruction performance. Extensive experimental results have demonstrated GSCMRI can consistently recover both real-valued MR images and complex-valued MR data efficiently,and outperform the current state-of-the-art approaches in terms of higher PSNR and lower HFEN values.展开更多
The method of recovering a low-rank matrix with an unknown fraction whose entries are arbitrarily corrupted is known as the robust principal component analysis (RPCA). This RPCA problem, under some conditions, can b...The method of recovering a low-rank matrix with an unknown fraction whose entries are arbitrarily corrupted is known as the robust principal component analysis (RPCA). This RPCA problem, under some conditions, can be exactly solved via convex optimization by minimizing a combination of the nuclear norm and the 11 norm. In this paper, an algorithm based on the Douglas-Rachford splitting method is proposed for solving the RPCA problem. First, the convex optimization problem is solved by canceling the constraint of the variables, and ~hen the proximity operators of the objective function are computed alternately. The new algorithm can exactly recover the low-rank and sparse components simultaneously, and it is proved to be convergent. Numerical simulations demonstrate the practical utility of the proposed algorithm.展开更多
At present,knowledge embedding methods are widely used in the field of knowledge graph(KG)reasoning,and have been successfully applied to those with large entities and relationships.However,in research and production ...At present,knowledge embedding methods are widely used in the field of knowledge graph(KG)reasoning,and have been successfully applied to those with large entities and relationships.However,in research and production environments,there are a large number of KGs with a small number of entities and relations,which are called sparse KGs.Limited by the performance of knowledge extraction methods or some other reasons(some common-sense information does not appear in the natural corpus),the relation between entities is often incomplete.To solve this problem,a method of the graph neural network and information enhancement is proposed.The improved method increases the mean reciprocal rank(MRR)and Hit@3 by 1.6%and 1.7%,respectively,when the sparsity of the FB15K-237 dataset is 10%.When the sparsity is 50%,the evaluation indexes MRR and Hit@10 are increased by 0.8%and 1.8%,respectively.展开更多
Text event mining,as an indispensable method of text mining processing,has attracted the extensive attention of researchers.A modeling method for knowledge graph of events based on mutual information among neighbor do...Text event mining,as an indispensable method of text mining processing,has attracted the extensive attention of researchers.A modeling method for knowledge graph of events based on mutual information among neighbor domains and sparse representation is proposed in this paper,i.e.UKGE-MS.Specifically,UKGE-MS can improve the existing text mining technology's ability of understanding and discovering high-dimensional unmarked information,and solves the problems of traditional unsupervised feature selection methods,which only focus on selecting features from a global perspective and ignoring the impact of local connection of samples.Firstly,considering the influence of local information of samples in feature correlation evaluation,a feature clustering algorithm based on average neighborhood mutual information is proposed,and the feature clusters with certain event correlation are obtained;Secondly,an unsupervised feature selection method based on the high-order correlation of multi-dimensional statistical data is designed by combining the dimension reduction advantage of local linear embedding algorithm and the feature selection ability of sparse representation,so as to enhance the generalization ability of the selected feature items.Finally,the events knowledge graph is constructed by means of sparse representation and l1 norm.Extensive experiments are carried out on five real datasets and synthetic datasets,and the UKGE-MS are compared with five corresponding algorithms.The experimental results show that UKGE-MS is better than the traditional method in event clustering and feature selection,and has some advantages over other methods in text event recognition and discovery.展开更多
At present, although the human speech separation has achieved fruitful results, it is not ideal for the separation of singing and accompaniment. Based on low-rank and sparse optimization theory, in this paper, we prop...At present, although the human speech separation has achieved fruitful results, it is not ideal for the separation of singing and accompaniment. Based on low-rank and sparse optimization theory, in this paper, we propose a new singing voice separation algorithm called Low-rank, Sparse Representation with pre-learned dictionaries and side Information (LSRi). The algorithm incorporates both the vocal and instrumental spectrograms as sparse matrix and low-rank matrix, meanwhile combines pre-learning dictionary and the reconstructed voice spectrogram form the annotation. Evaluations on the iKala dataset show that the proposed methods are effective and efficient for singing voice separation.展开更多
In this paper, a two-level Bregman method is presented with graph regularized sparse coding for highly undersampled magnetic resonance image reconstruction. The graph regularized sparse coding is incorporated with the...In this paper, a two-level Bregman method is presented with graph regularized sparse coding for highly undersampled magnetic resonance image reconstruction. The graph regularized sparse coding is incorporated with the two-level Bregman iterative procedure which enforces the sampled data constraints in the outer level and updates dictionary and sparse representation in the inner level. Graph regularized sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge with a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can consistently reconstruct both simulated MR images and real MR data efficiently, and outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures.展开更多
The conventional sparse representation-based image classification usually codes the samples independently,which will ignore the correlation information existed in the data.Hence,if we can explore the correlation infor...The conventional sparse representation-based image classification usually codes the samples independently,which will ignore the correlation information existed in the data.Hence,if we can explore the correlation information hidden in the data,the classification result will be improved significantly.To this end,in this paper,a novel weighted supervised spare coding method is proposed to address the image classification problem.The proposed method firstly explores the structural information sufficiently hidden in the data based on the low rank representation.And then,it introduced the extracted structural information to a novel weighted sparse representation model to code the samples in a supervised way.Experimental results show that the proposed method is superiority to many conventional image classification methods.展开更多
This paper considers approximately sparse signal and low-rank matrix’s recovery via truncated norm minimization minx∥xT∥q and minX∥XT∥Sq from noisy measurements.We first introduce truncated sparse approximation p...This paper considers approximately sparse signal and low-rank matrix’s recovery via truncated norm minimization minx∥xT∥q and minX∥XT∥Sq from noisy measurements.We first introduce truncated sparse approximation property,a more general robust null space property,and establish the stable recovery of signals and matrices under the truncated sparse approximation property.We also explore the relationship between the restricted isometry property and truncated sparse approximation property.And we also prove that if a measurement matrix A or linear map A satisfies truncated sparse approximation property of order k,then the first inequality in restricted isometry property of order k and of order 2k can hold for certain different constantsδk andδ2k,respectively.Last,we show that ifδs(k+|T^c|)<√(s-1)/s for some s≥4/3,then measurement matrix A and linear map A satisfy truncated sparse approximation property of order k.It should be pointed out that when Tc=Ф,our conclusion implies that sparse approximation property of order k is weaker than restricted isometry property of order sk.展开更多
Least squares projection twin support vector machine(LSPTSVM)has faster computing speed than classical least squares support vector machine(LSSVM).However,LSPTSVM is sensitive to outliers and its solution lacks sparsi...Least squares projection twin support vector machine(LSPTSVM)has faster computing speed than classical least squares support vector machine(LSSVM).However,LSPTSVM is sensitive to outliers and its solution lacks sparsity.Therefore,it is difficult for LSPTSVM to process large-scale datasets with outliers.In this paper,we propose a robust LSPTSVM model(called R-LSPTSVM)by applying truncated least squares loss function.The robustness of R-LSPTSVM is proved from a weighted perspective.Furthermore,we obtain the sparse solution of R-LSPTSVM by using the pivoting Cholesky factorization method in primal space.Finally,the sparse R-LSPTSVM algorithm(SR-LSPTSVM)is proposed.Experimental results show that SR-LSPTSVM is insensitive to outliers and can deal with large-scale datasets fastly.展开更多
The concept of structured sparse coding noise is introduced to exploit the spatial correlations and nonlocal constraint of the local structure. Then the model of nonlocally centralized simultaneous sparse coding(NCSSC...The concept of structured sparse coding noise is introduced to exploit the spatial correlations and nonlocal constraint of the local structure. Then the model of nonlocally centralized simultaneous sparse coding(NCSSC)is proposed for reconstructing the original image, and an algorithm is proposed to transform the simultaneous sparse coding into reweighted low-rank approximation. Experimental results on image denoisng, deblurring and super-resolution demonstrate the advantage of the proposed NC-SSC method over the state-of-the-art image restoration methods.展开更多
Indoor environment quality(IEQ)is one of the most concerned building performances during the operation stage.The non-uniform spatial distribution of various IEQ parameters in large-scale public buildings has been demo...Indoor environment quality(IEQ)is one of the most concerned building performances during the operation stage.The non-uniform spatial distribution of various IEQ parameters in large-scale public buildings has been demonstrated to be an essential factor affecting occupant comfort and building energy consumption.Currently,IEQ sensors have been widely employed in buildings to monitor thermal,visual,acoustic and air quality.However,there is a lack of effective methods for exploring the typical spatial distribution of indoor environmental quality parameters,which is crucial for assessing and controlling non-uniform indoor environments.In this study,a novel clustering method for extracting IEQ spatial distribution patterns is proposed.Firstly,representation vectors reflecting IEQ distributions in the concerned space are generated based on the low-rank sparse representation.Secondly,a multi-step clustering method,which addressed the problems of the“curse of dimensionality”,is designed to obtain typical IEQ distribution patterns of the entire indoor space.The proposed method was applied to the analysis of indoor thermal environment in Beijing Daxing international airport terminal.As a result,four typical temperature spatial distribution patterns of the terminal were extracted from a four-month monitoring,which had been validated for their good representativeness.These typical patterns revealed typical environmental issues in the terminal,such as long-term localized overheating and temperature increases due to a sudden influx of people.The extracted typical IEQ spatial distribution patterns could assist building operators in effectively assessing the uneven distribution of IEQ space under current environmental conditions,facilitating targeted environmental improvements,optimization of thermal comfort levels,and application of energy-saving measures.展开更多
文摘Multi-view Subspace Clustering (MVSC) emerges as an advanced clustering method, designed to integrate diverse views to uncover a common subspace, enhancing the accuracy and robustness of clustering results. The significance of low-rank prior in MVSC is emphasized, highlighting its role in capturing the global data structure across views for improved performance. However, it faces challenges with outlier sensitivity due to its reliance on the Frobenius norm for error measurement. Addressing this, our paper proposes a Low-Rank Multi-view Subspace Clustering Based on Sparse Regularization (LMVSC- Sparse) approach. Sparse regularization helps in selecting the most relevant features or views for clustering while ignoring irrelevant or noisy ones. This leads to a more efficient and effective representation of the data, improving the clustering accuracy and robustness, especially in the presence of outliers or noisy data. By incorporating sparse regularization, LMVSC-Sparse can effectively handle outlier sensitivity, which is a common challenge in traditional MVSC methods relying solely on low-rank priors. Then Alternating Direction Method of Multipliers (ADMM) algorithm is employed to solve the proposed optimization problems. Our comprehensive experiments demonstrate the efficiency and effectiveness of LMVSC-Sparse, offering a robust alternative to traditional MVSC methods.
文摘Principal Component Analysis (PCA) is a widely used technique for data analysis and dimensionality reduction, but its sensitivity to feature scale and outliers limits its applicability. Robust Principal Component Analysis (RPCA) addresses these limitations by decomposing data into a low-rank matrix capturing the underlying structure and a sparse matrix identifying outliers, enhancing robustness against noise and outliers. This paper introduces a novel RPCA variant, Robust PCA Integrating Sparse and Low-rank Priors (RPCA-SL). Each prior targets a specific aspect of the data’s underlying structure and their combination allows for a more nuanced and accurate separation of the main data components from outliers and noise. Then RPCA-SL is solved by employing a proximal gradient algorithm for improved anomaly detection and data decomposition. Experimental results on simulation and real data demonstrate significant advancements.
基金The National Natural Science Foundation of China (No.61362001,61102043,61262084,20132BAB211030,20122BAB211015)the Basic Research Program of Shenzhen(No.JC201104220219A)
文摘A two-level Bregmanized method with graph regularized sparse coding (TBGSC) is presented for image interpolation. The outer-level Bregman iterative procedure enforces the observation data constraints, while the inner-level Bregmanized method devotes to dictionary updating and sparse represention of small overlapping image patches. The introduced constraint of graph regularized sparse coding can capture local image features effectively, and consequently enables accurate reconstruction from highly undersampled partial data. Furthermore, modified sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge within a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can effectively reconstruct images and it outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures.
基金Project supported by the National Natural Science Foundation of China(Grant No.60972046)Grant from the National Defense Pre-Research Foundation of China
文摘For quantum sparse graph codes with stabilizer formalism, the unavoidable girth-four cycles in their Tanner graphs greatly degrade the iterative decoding performance with standard belief-propagation (BP) algorithm. In this paper, we present a jointly-check iterative algorithm suitable for decoding quantum sparse graph codes efficiently. Numerical simulations show that this modified method outperforms standard BP algorithm with an obvious performance improvement.
基金National Natural Foundation of China(No.41971279)Fundamental Research Funds of the Central Universities(No.B200202012)。
文摘Low-Rank and Sparse Representation(LRSR)method has gained popularity in Hyperspectral Image(HSI)processing.However,existing LRSR models rarely exploited spectral-spatial classification of HSI.In this paper,we proposed a novel Low-Rank and Sparse Representation with Adaptive Neighborhood Regularization(LRSR-ANR)method for HSI classification.In the proposed method,we first represent the hyperspectral data via LRSR since it combines both sparsity and low-rankness to maintain global and local data structures simultaneously.The LRSR is optimized by using a mixed Gauss-Seidel and Jacobian Alternating Direction Method of Multipliers(M-ADMM),which converges faster than ADMM.Then to incorporate the spatial information,an ANR scheme is designed by combining Euclidean and Cosine distance metrics to reduce the mixed pixels within a neighborhood.Lastly,the predicted labels are determined by jointly considering the homogeneous pixels in the classification rule of the minimum reconstruction error.Experimental results based on three popular hyperspectral images demonstrate that the proposed method outperforms other related methods in terms of classification accuracy and generalization performance.
基金National Natural Science Foundations of China(Nos.61362001,61102043,61262084)Technology Foundations of Department of Education of Jiangxi Province,China(Nos.GJJ12006,GJJ14196)Natural Science Foundations of Jiangxi Province,China(Nos.20132BAB211030,20122BAB211015)
文摘The imaging speed is a bottleneck for magnetic resonance imaging( MRI) since it appears. To alleviate this difficulty,a novel graph regularized sparse coding method for highly undersampled MRI reconstruction( GSCMRI) was proposed. The graph regularized sparse coding showed the potential in maintaining the geometrical information of the data. In this study, it was incorporated with two-level Bregman iterative procedure that updated the data term in outer-level and learned dictionary in innerlevel. Moreover,the graph regularized sparse coding and simple dictionary updating stages derived by the inner minimization made the proposed algorithm converge in few iterations, meanwhile achieving superior reconstruction performance. Extensive experimental results have demonstrated GSCMRI can consistently recover both real-valued MR images and complex-valued MR data efficiently,and outperform the current state-of-the-art approaches in terms of higher PSNR and lower HFEN values.
基金supported by the National Natural Science Foundation of China(No.61271014)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20124301110003)the Graduated Students Innovation Fund of Hunan Province(No.CX2012B238)
文摘The method of recovering a low-rank matrix with an unknown fraction whose entries are arbitrarily corrupted is known as the robust principal component analysis (RPCA). This RPCA problem, under some conditions, can be exactly solved via convex optimization by minimizing a combination of the nuclear norm and the 11 norm. In this paper, an algorithm based on the Douglas-Rachford splitting method is proposed for solving the RPCA problem. First, the convex optimization problem is solved by canceling the constraint of the variables, and ~hen the proximity operators of the objective function are computed alternately. The new algorithm can exactly recover the low-rank and sparse components simultaneously, and it is proved to be convergent. Numerical simulations demonstrate the practical utility of the proposed algorithm.
基金supported by the Sichuan Science and Technology Program under Grants No.2022YFQ0052 and No.2021YFQ0009.
文摘At present,knowledge embedding methods are widely used in the field of knowledge graph(KG)reasoning,and have been successfully applied to those with large entities and relationships.However,in research and production environments,there are a large number of KGs with a small number of entities and relations,which are called sparse KGs.Limited by the performance of knowledge extraction methods or some other reasons(some common-sense information does not appear in the natural corpus),the relation between entities is often incomplete.To solve this problem,a method of the graph neural network and information enhancement is proposed.The improved method increases the mean reciprocal rank(MRR)and Hit@3 by 1.6%and 1.7%,respectively,when the sparsity of the FB15K-237 dataset is 10%.When the sparsity is 50%,the evaluation indexes MRR and Hit@10 are increased by 0.8%and 1.8%,respectively.
基金This study was funded by the International Science and Technology Cooperation Program of the Science and Technology Department of Shaanxi Province,China(No.2021KW-16)the Science and Technology Project in Xi’an(No.2019218114GXRC017CG018-GXYD17.11),Thesis work was supported by the special fund construction project of Key Disciplines in Ordinary Colleges and Universities in Shaanxi Province,the authors would like to thank the anonymous reviewers for their helpful comments and suggestions.
文摘Text event mining,as an indispensable method of text mining processing,has attracted the extensive attention of researchers.A modeling method for knowledge graph of events based on mutual information among neighbor domains and sparse representation is proposed in this paper,i.e.UKGE-MS.Specifically,UKGE-MS can improve the existing text mining technology's ability of understanding and discovering high-dimensional unmarked information,and solves the problems of traditional unsupervised feature selection methods,which only focus on selecting features from a global perspective and ignoring the impact of local connection of samples.Firstly,considering the influence of local information of samples in feature correlation evaluation,a feature clustering algorithm based on average neighborhood mutual information is proposed,and the feature clusters with certain event correlation are obtained;Secondly,an unsupervised feature selection method based on the high-order correlation of multi-dimensional statistical data is designed by combining the dimension reduction advantage of local linear embedding algorithm and the feature selection ability of sparse representation,so as to enhance the generalization ability of the selected feature items.Finally,the events knowledge graph is constructed by means of sparse representation and l1 norm.Extensive experiments are carried out on five real datasets and synthetic datasets,and the UKGE-MS are compared with five corresponding algorithms.The experimental results show that UKGE-MS is better than the traditional method in event clustering and feature selection,and has some advantages over other methods in text event recognition and discovery.
文摘At present, although the human speech separation has achieved fruitful results, it is not ideal for the separation of singing and accompaniment. Based on low-rank and sparse optimization theory, in this paper, we propose a new singing voice separation algorithm called Low-rank, Sparse Representation with pre-learned dictionaries and side Information (LSRi). The algorithm incorporates both the vocal and instrumental spectrograms as sparse matrix and low-rank matrix, meanwhile combines pre-learning dictionary and the reconstructed voice spectrogram form the annotation. Evaluations on the iKala dataset show that the proposed methods are effective and efficient for singing voice separation.
基金Supported by the National Natural Science Foundation of China(No.61261010No.61362001+7 种基金No.61365013No.61262084No.51165033)Technology Foundation of Department of Education in Jiangxi Province(GJJ13061GJJ14196)Young Scientists Training Plan of Jiangxi Province(No.20133ACB21007No.20142BCB23001)National Post-Doctoral Research Fund(No.2014M551867)and Jiangxi Advanced Project for Post-Doctoral Research Fund(No.2014KY02)
文摘In this paper, a two-level Bregman method is presented with graph regularized sparse coding for highly undersampled magnetic resonance image reconstruction. The graph regularized sparse coding is incorporated with the two-level Bregman iterative procedure which enforces the sampled data constraints in the outer level and updates dictionary and sparse representation in the inner level. Graph regularized sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge with a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can consistently reconstruct both simulated MR images and real MR data efficiently, and outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures.
基金This research is funded by the National Natural Science Foundation of China(61771154).
文摘The conventional sparse representation-based image classification usually codes the samples independently,which will ignore the correlation information existed in the data.Hence,if we can explore the correlation information hidden in the data,the classification result will be improved significantly.To this end,in this paper,a novel weighted supervised spare coding method is proposed to address the image classification problem.The proposed method firstly explores the structural information sufficiently hidden in the data based on the low rank representation.And then,it introduced the extracted structural information to a novel weighted sparse representation model to code the samples in a supervised way.Experimental results show that the proposed method is superiority to many conventional image classification methods.
基金supported by the National Natural Science Foundation of China(11871109)NSAF(U1830107)the Science Challenge Project(TZ2018001)
文摘This paper considers approximately sparse signal and low-rank matrix’s recovery via truncated norm minimization minx∥xT∥q and minX∥XT∥Sq from noisy measurements.We first introduce truncated sparse approximation property,a more general robust null space property,and establish the stable recovery of signals and matrices under the truncated sparse approximation property.We also explore the relationship between the restricted isometry property and truncated sparse approximation property.And we also prove that if a measurement matrix A or linear map A satisfies truncated sparse approximation property of order k,then the first inequality in restricted isometry property of order k and of order 2k can hold for certain different constantsδk andδ2k,respectively.Last,we show that ifδs(k+|T^c|)<√(s-1)/s for some s≥4/3,then measurement matrix A and linear map A satisfy truncated sparse approximation property of order k.It should be pointed out that when Tc=Ф,our conclusion implies that sparse approximation property of order k is weaker than restricted isometry property of order sk.
基金supported by the National Natural Science Foundation of China(6177202062202433+4 种基金621723716227242262036010)the Natural Science Foundation of Henan Province(22100002)the Postdoctoral Research Grant in Henan Province(202103111)。
文摘Least squares projection twin support vector machine(LSPTSVM)has faster computing speed than classical least squares support vector machine(LSSVM).However,LSPTSVM is sensitive to outliers and its solution lacks sparsity.Therefore,it is difficult for LSPTSVM to process large-scale datasets with outliers.In this paper,we propose a robust LSPTSVM model(called R-LSPTSVM)by applying truncated least squares loss function.The robustness of R-LSPTSVM is proved from a weighted perspective.Furthermore,we obtain the sparse solution of R-LSPTSVM by using the pivoting Cholesky factorization method in primal space.Finally,the sparse R-LSPTSVM algorithm(SR-LSPTSVM)is proposed.Experimental results show that SR-LSPTSVM is insensitive to outliers and can deal with large-scale datasets fastly.
基金Supported by the National Natural Science Foundation of China(No.61379014)
文摘The concept of structured sparse coding noise is introduced to exploit the spatial correlations and nonlocal constraint of the local structure. Then the model of nonlocally centralized simultaneous sparse coding(NCSSC)is proposed for reconstructing the original image, and an algorithm is proposed to transform the simultaneous sparse coding into reweighted low-rank approximation. Experimental results on image denoisng, deblurring and super-resolution demonstrate the advantage of the proposed NC-SSC method over the state-of-the-art image restoration methods.
基金the China National Key Research and Development Program(Grant No.2022YFC3801300)the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.52208113)+1 种基金the Key Program of National Natural Science Foundation of China(Grant No.52130803)the Hang Lung Center for Real Estate,Tsinghua University.The authors also express special thanks to the Command Center of Beijing Daxing International Airport for their long-term and strong support to this research.
文摘Indoor environment quality(IEQ)is one of the most concerned building performances during the operation stage.The non-uniform spatial distribution of various IEQ parameters in large-scale public buildings has been demonstrated to be an essential factor affecting occupant comfort and building energy consumption.Currently,IEQ sensors have been widely employed in buildings to monitor thermal,visual,acoustic and air quality.However,there is a lack of effective methods for exploring the typical spatial distribution of indoor environmental quality parameters,which is crucial for assessing and controlling non-uniform indoor environments.In this study,a novel clustering method for extracting IEQ spatial distribution patterns is proposed.Firstly,representation vectors reflecting IEQ distributions in the concerned space are generated based on the low-rank sparse representation.Secondly,a multi-step clustering method,which addressed the problems of the“curse of dimensionality”,is designed to obtain typical IEQ distribution patterns of the entire indoor space.The proposed method was applied to the analysis of indoor thermal environment in Beijing Daxing international airport terminal.As a result,four typical temperature spatial distribution patterns of the terminal were extracted from a four-month monitoring,which had been validated for their good representativeness.These typical patterns revealed typical environmental issues in the terminal,such as long-term localized overheating and temperature increases due to a sudden influx of people.The extracted typical IEQ spatial distribution patterns could assist building operators in effectively assessing the uneven distribution of IEQ space under current environmental conditions,facilitating targeted environmental improvements,optimization of thermal comfort levels,and application of energy-saving measures.