情感计算是现代人机交互中的关键问题,随着人工智能的发展,基于脑电信号(electroencephalogram, EEG)的情绪识别已经成为重要的研究方向.为了提高情绪识别的分类精度,本研究引入堆叠自动编码器(stacked autoencoder, SAE)对EEG多通道信...情感计算是现代人机交互中的关键问题,随着人工智能的发展,基于脑电信号(electroencephalogram, EEG)的情绪识别已经成为重要的研究方向.为了提高情绪识别的分类精度,本研究引入堆叠自动编码器(stacked autoencoder, SAE)对EEG多通道信号进行深度特征提取,并提出一种基于广义正态分布优化的支持向量机(generalized normal distribution optimization based support vector machine, GNDO-SVM)情绪识别模型.实验结果表明,与基于遗传算法、粒子群算法和麻雀搜索算法优化的支持向量机模型相比,所提出的GNDO-SVM模型具有更优的分类性能,基于SAE深度特征的情感识别准确率达到了90.94%,表明SAE能够有效地挖掘EEG信号不同通道间的深度相关性信息.因此,利用SAE深度特征结合GNDO-SVM模型可以有效地实现EEG信号的情绪识别.展开更多
针对稀疏自动编码器(Sparse auto encoder,SAE)采用sigmoid激活函数容易造成梯度消失的问题,用一种新的Tan函数替代原有的sigmoid函数;针对SAE采用Kullback-Leibler(KL)散度进行稀疏性约束在回归预测方面的局限性,以dropout机制替代KL...针对稀疏自动编码器(Sparse auto encoder,SAE)采用sigmoid激活函数容易造成梯度消失的问题,用一种新的Tan函数替代原有的sigmoid函数;针对SAE采用Kullback-Leibler(KL)散度进行稀疏性约束在回归预测方面的局限性,以dropout机制替代KL散度实现网络的稀疏性.利用改进SAE对滚动轴承振动信号进行无监督深层特征自适应提取,无需人工设计标签进行有监督微调.同时,考虑到滚动轴承剩余使用寿命(Remaining useful life,RUL)预测方法一般仅考虑过去信息而忽略未来信息,引入双向长短时记忆网络(Bi-directional long short-term memory,Bi-LSTM)构建滚动轴承RUL的预测模型.在2个轴承数据集上的实验结果均表明,所提基于改进SAE和Bi-LSTM的滚动轴承RUL预测方法不仅可以提高模型的收敛速度而且具有较低的预测误差.展开更多
针对滚动轴承的故障诊断问题,提出了一种基于栈式稀疏自编码网络(stacked sparse auto encoder,简称SSAE)、改进灰狼智能优化算法(improved grey wolf optimization,简称IGWO)以及支持向量机(support vector machine,简称SVM)的混合智...针对滚动轴承的故障诊断问题,提出了一种基于栈式稀疏自编码网络(stacked sparse auto encoder,简称SSAE)、改进灰狼智能优化算法(improved grey wolf optimization,简称IGWO)以及支持向量机(support vector machine,简称SVM)的混合智能故障诊断模型。首先,利用栈式自编码网络强大的特征自提取能力,实现故障信号深层频谱特征的自适应学习,通过引入稀疏项约束提高特征学习的泛化性能;其次,利用改进的灰狼算法实现支持向量机的参数优化;最后,基于优化后的SVM完成对故障特征向量的分类识别。所提混合智能故障诊断模型充分结合了深度神经网络强大的特征自学习能力和支持向量机优秀的小样本分类性能,避免了手工特征提取的弊端,可对不同故障类型的振动信号实现更精准的识别。多组对比实验表明,相比传统方法,笔者所提出的模型具有更优秀的故障识别能力,诊断准确率可达98%以上。展开更多
文摘情感计算是现代人机交互中的关键问题,随着人工智能的发展,基于脑电信号(electroencephalogram, EEG)的情绪识别已经成为重要的研究方向.为了提高情绪识别的分类精度,本研究引入堆叠自动编码器(stacked autoencoder, SAE)对EEG多通道信号进行深度特征提取,并提出一种基于广义正态分布优化的支持向量机(generalized normal distribution optimization based support vector machine, GNDO-SVM)情绪识别模型.实验结果表明,与基于遗传算法、粒子群算法和麻雀搜索算法优化的支持向量机模型相比,所提出的GNDO-SVM模型具有更优的分类性能,基于SAE深度特征的情感识别准确率达到了90.94%,表明SAE能够有效地挖掘EEG信号不同通道间的深度相关性信息.因此,利用SAE深度特征结合GNDO-SVM模型可以有效地实现EEG信号的情绪识别.
文摘针对稀疏自动编码器(Sparse auto encoder,SAE)采用sigmoid激活函数容易造成梯度消失的问题,用一种新的Tan函数替代原有的sigmoid函数;针对SAE采用Kullback-Leibler(KL)散度进行稀疏性约束在回归预测方面的局限性,以dropout机制替代KL散度实现网络的稀疏性.利用改进SAE对滚动轴承振动信号进行无监督深层特征自适应提取,无需人工设计标签进行有监督微调.同时,考虑到滚动轴承剩余使用寿命(Remaining useful life,RUL)预测方法一般仅考虑过去信息而忽略未来信息,引入双向长短时记忆网络(Bi-directional long short-term memory,Bi-LSTM)构建滚动轴承RUL的预测模型.在2个轴承数据集上的实验结果均表明,所提基于改进SAE和Bi-LSTM的滚动轴承RUL预测方法不仅可以提高模型的收敛速度而且具有较低的预测误差.
文摘针对滚动轴承的故障诊断问题,提出了一种基于栈式稀疏自编码网络(stacked sparse auto encoder,简称SSAE)、改进灰狼智能优化算法(improved grey wolf optimization,简称IGWO)以及支持向量机(support vector machine,简称SVM)的混合智能故障诊断模型。首先,利用栈式自编码网络强大的特征自提取能力,实现故障信号深层频谱特征的自适应学习,通过引入稀疏项约束提高特征学习的泛化性能;其次,利用改进的灰狼算法实现支持向量机的参数优化;最后,基于优化后的SVM完成对故障特征向量的分类识别。所提混合智能故障诊断模型充分结合了深度神经网络强大的特征自学习能力和支持向量机优秀的小样本分类性能,避免了手工特征提取的弊端,可对不同故障类型的振动信号实现更精准的识别。多组对比实验表明,相比传统方法,笔者所提出的模型具有更优秀的故障识别能力,诊断准确率可达98%以上。