期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
基于稀疏编码金字塔模型的农田害虫图像识别 被引量:27
1
作者 谢成军 李瑞 +4 位作者 董伟 宋良图 张洁 陈红波 陈天娇 《农业工程学报》 EI CAS CSCD 北大核心 2016年第17期144-151,共8页
相较于一般物体的图像,农作物害虫图像因具有复杂的农田环境背景,分类与识别更加困难。为提高害虫图像识别的准确率,该文提出一种基于图像稀疏编码与空间金字塔模型相结合的害虫图像表示与识别方法。该方法利用大量非标注的自然图像块... 相较于一般物体的图像,农作物害虫图像因具有复杂的农田环境背景,分类与识别更加困难。为提高害虫图像识别的准确率,该文提出一种基于图像稀疏编码与空间金字塔模型相结合的害虫图像表示与识别方法。该方法利用大量非标注的自然图像块构造过完备学习字典,并运用该学习字典实现对害虫图像的多空间稀疏表示。与此同时,结合多核学习,该文设计了一种害虫图像识别算法。通过对35种害虫的识别,试验结果表明:在相同方法下,该文所提特征提取方法可使平均识别精度提高9.5百分点;此外,进一步通过对221种昆虫及20种蝴蝶的识别,试验结果表明:与传统方法相比较,该文所提方法使得平均识别精度提高14.1百分点。 展开更多
关键词 图像识别 算法 害虫控制 字典学习 稀疏编码 金字塔模型
下载PDF
基于稀疏编码多尺度空间潜在语义分析的图像分类 被引量:26
2
作者 赵仲秋 季海峰 +2 位作者 高隽 胡东辉 吴信东 《计算机学报》 EI CSCD 北大核心 2014年第6期1251-1260,共10页
传统潜在语义分析方法无法利用图像中区域语义构成的上下文信息来获得图像目标空间分布信息,因此它丢掉了局部特征之间的空间关系信息.而基于最近邻矢量量化来构造共生矩阵具有较大的量化误差,使得特征描述缺乏鲁棒性,影响后续潜在语义... 传统潜在语义分析方法无法利用图像中区域语义构成的上下文信息来获得图像目标空间分布信息,因此它丢掉了局部特征之间的空间关系信息.而基于最近邻矢量量化来构造共生矩阵具有较大的量化误差,使得特征描述缺乏鲁棒性,影响后续潜在语义分析获得特征的精确性.为了弥补这些不足,文中提出了一种基于稀疏编码的多尺度空间潜在语义分析的图像分类方法.首先通过空间金字塔方法对图像进行空间多尺度划分,然后利用稀疏编码对每个局部块特征进行软量化以形成共生矩阵,之后结合概率潜在语义分析(PLSA)获得每个局部块的潜在语义信息,再利用权值串接每个特定局部块中的语义信息得到图像多尺度空间潜在语义信息,最后用支持向量机(SVM)分类器完成图像的场景分类.在常见图像库上的实验表明,本文提出的基于稀疏编码的多尺度空间潜在语义分析方法平均分类精度比现有诸多方法均有明显提高,验证了其有效性和鲁棒性.实验还表明,空间金字塔匹配、稀疏编码共生矩阵以及PLSA降维这3个模块在该文方法中缺一不可,共同提升图像表征和分类性能. 展开更多
关键词 图像分类 稀疏编码 潜在语义分析 空间金字塔
下载PDF
一种基于稀疏编码的多核学习图像分类方法 被引量:31
3
作者 亓晓振 王庆 《电子学报》 EI CAS CSCD 北大核心 2012年第4期773-779,共7页
本文提出一种基于稀疏编码的多核学习图像分类方法.传统稀疏编码方法对图像进行分类时,损失了空间信息,本文采用对图像进行空间金字塔多划分方式为特征加入空间信息限制.在利用非线性SVM方法进行图像分类时,空间金字塔的各层分别形成一... 本文提出一种基于稀疏编码的多核学习图像分类方法.传统稀疏编码方法对图像进行分类时,损失了空间信息,本文采用对图像进行空间金字塔多划分方式为特征加入空间信息限制.在利用非线性SVM方法进行图像分类时,空间金字塔的各层分别形成一个核矩阵,本文使用多核学习方法求解各个核矩阵的权重,通过核矩阵的线性组合来获取能够对整个分类集区分能力最强的核矩阵.实验结果表明了本文所提出图像分类方法的有效性和鲁棒性.对Scene Categories场景数据集可以达到83.10%的分类准确率,这是当前该数据集上能达到的最高分类准确率. 展开更多
关键词 图像分类 多核学习 稀疏编码 空间金字塔
下载PDF
集成多特征与稀疏编码的图像分类方法 被引量:7
4
作者 罗会兰 郭敏杰 孔繁胜 《模式识别与人工智能》 EI CSCD 北大核心 2014年第4期345-355,共11页
采用单一特征时存在提取信息量不足、对图像内容描述较片面等问题,单一编码方法在组织特征向量时也会对图像造成过多的信息丢失.针对这些问题,文中提出一种集成多特征与稀疏编码方法.首先,对图像进行空间金字塔划分,结合尺度不变特征和... 采用单一特征时存在提取信息量不足、对图像内容描述较片面等问题,单一编码方法在组织特征向量时也会对图像造成过多的信息丢失.针对这些问题,文中提出一种集成多特征与稀疏编码方法.首先,对图像进行空间金字塔划分,结合尺度不变特征和梯度方向直方图特征之间的优势互补性,提取得到不同的特征集.然后,在不同的特征集上用不同的聚类方法得到不同的视觉词汇本,在每个词汇本上分别进行局部稀疏编码和稀疏编码,得到不同的图像描述集.最后,利用线性SVM进行图像分类,并对得到的多个结果采用投票决策方法决定最终分类情况.实验表明文中方法有良好的准确性和鲁棒性. 展开更多
关键词 图像分类 空间金字塔 集成 多特征组合 稀疏编码
下载PDF
基于非负弹性网稀疏编码算法的图像分类方法 被引量:4
5
作者 张勇 张阳阳 +1 位作者 程洪 张艳霞 《计算机工程》 CAS CSCD 北大核心 2017年第7期239-243,249,共6页
为提高图像分类的准确率,提出一种非负弹性网稀疏编码算法。利用非负稀疏编码算法和弹性网模型,在稀疏编码优化模型的目标函数中引入l_2范数正则项,增加编码系数的非负约束,并将该算法与空间金字塔模型相结合应用于图像分类。实验结果表... 为提高图像分类的准确率,提出一种非负弹性网稀疏编码算法。利用非负稀疏编码算法和弹性网模型,在稀疏编码优化模型的目标函数中引入l_2范数正则项,增加编码系数的非负约束,并将该算法与空间金字塔模型相结合应用于图像分类。实验结果表明,与传统的稀疏编码算法相比,该算法不仅能提高编码的判别性与有效性,而且可使相似的特征描述符编码后仍然相似,增强编码的稳定性,具有较高的分类准确度。 展开更多
关键词 图像分类 稀疏编码 空间金字塔匹配 弹性网 字典学习 支持向量机
下载PDF
基于互信息的多通道联合稀疏模型及其组织病理图像分类 被引量:4
6
作者 汤红忠 李骁 +1 位作者 张小刚 张东波 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2018年第8期1514-1521,共8页
针对传统联合稀疏模型中共有分量与独有分量都采用相同的字典进行特征表示,导致编码系数判别性低的问题,提出一种基于互信息的多通道联合稀疏模型,并将其应用于组织病理图像的分类.该模型通过K均值对样本特征进行聚类,分别得到R,G与B通... 针对传统联合稀疏模型中共有分量与独有分量都采用相同的字典进行特征表示,导致编码系数判别性低的问题,提出一种基于互信息的多通道联合稀疏模型,并将其应用于组织病理图像的分类.该模型通过K均值对样本特征进行聚类,分别得到R,G与B通道的字典;其次利用样本特征与3个字典之间的互信息,剔除弱相关原子且构造了1个共有字典与3个独有字典,以此为基础建立了多通道联合稀疏模型;同时引入图像的空间信息,结合空间金字塔匹配模型对不同层次的图像特征进行联合稀疏编码,利用编码系数训练SVM分类器.实验结果表明,该模型具有更好的特征表示能力,大大提高了编码系数的判别性,获得了较好的分类性能与较强的鲁棒性. 展开更多
关键词 互信息 多通道联合稀疏模型 空间金字塔匹配 组织病理图像分类
下载PDF
基于核拉普拉斯稀疏编码的图像分类 被引量:2
7
作者 张立和 潘磊 +1 位作者 刘涛 马臣 《大连理工大学学报》 EI CAS CSCD 北大核心 2015年第2期192-197,共6页
使用稀疏编码解决计算机视觉问题可以取得良好的效果.然而,以往的稀疏编码都是在原始特征空间进行.受核方法可以获得特征的高维非线性映射的启发,扩展了拉普拉斯稀疏编码(LSc),提出了核拉普拉斯稀疏编码(KLSc),它可以降低特征量化误差,... 使用稀疏编码解决计算机视觉问题可以取得良好的效果.然而,以往的稀疏编码都是在原始特征空间进行.受核方法可以获得特征的高维非线性映射的启发,扩展了拉普拉斯稀疏编码(LSc),提出了核拉普拉斯稀疏编码(KLSc),它可以降低特征量化误差,增强稀疏编码的性能.在3个标准数据集上的实验结果表明,所提出的基于KLSc的图像分类算法具有良好的分类效果,分类正确率优于LSc. 展开更多
关键词 图像分类 稀疏编码 拉普拉斯稀疏编码 核方法 空间金字塔匹配(SPM)
下载PDF
基于稀疏编码的脑脊液图像快速识别模型 被引量:7
8
作者 黄文明 蔡文正 邓珍荣 《计算机应用》 CSCD 北大核心 2014年第7期2040-2043,2049,共5页
考虑到采用传统的图像分割算法很难准确地分割脑脊液(CSF)细胞图像,提出了一种基于稀疏编码的脑脊液图像快速识别模型。该模型首先利用稀疏编码提取图像中的局部特征以及特征描述子,然后将特征描述子转换成线性空间金字塔匹配(SPM)结构... 考虑到采用传统的图像分割算法很难准确地分割脑脊液(CSF)细胞图像,提出了一种基于稀疏编码的脑脊液图像快速识别模型。该模型首先利用稀疏编码提取图像中的局部特征以及特征描述子,然后将特征描述子转换成线性空间金字塔匹配(SPM)结构,最后将计算结果输入到线性支持向量机(SVM)中进行训练和预测。对脑脊液细胞图像做了异常识别和分类测试,其中异常识别准确率达到了89.4±0.9%,且对每张760×570的图像平均识别时间只需1.3 s,由此可以表明所提出的模型能够有效快速地区分脑脊液细胞是否异常。 展开更多
关键词 稀疏编码 脑脊液 无监督学习 线性空间金字塔匹配 线性支持向量机
下载PDF
融合局部性和非负性的Laplacian稀疏编码的图像分类 被引量:3
9
作者 万源 史莹 +1 位作者 吴克风 陈晓丽 《模式识别与人工智能》 EI CSCD 北大核心 2017年第6期481-488,共8页
稀疏编码在编码过程中忽略特征之间的局部关系,使编码不稳定,并且优化问题中的减法运算可能会导致特征之间相互抵消.针对上述2个问题,文中提出融合局部性和非负性的Laplacian稀疏编码的图像分类方法.引入局部特征附近的基约束编码,利用... 稀疏编码在编码过程中忽略特征之间的局部关系,使编码不稳定,并且优化问题中的减法运算可能会导致特征之间相互抵消.针对上述2个问题,文中提出融合局部性和非负性的Laplacian稀疏编码的图像分类方法.引入局部特征附近的基约束编码,利用非负矩阵分解将非负性加到Laplacian稀疏编码中,利用空间金字塔划分和最大值融合表示最终的图像,并采用多类线性SVM分类图像.本文方法保留特征之间的局部信息,避免特征之间相互抵消,保留更多的特征,从而改善编码的不稳定性.在4个公共数据集上的实验表明,相比其它现有算法,本文方法分类准确率更高. 展开更多
关键词 局部性 非负性 Laplacian稀疏编码 空间金字塔划分 最大值融合
下载PDF
基于分层特征融合的行人分类 被引量:2
10
作者 孙锐 张广海 丁文秀 《计算机工程与科学》 CSCD 北大核心 2016年第10期2115-2120,共6页
针对复杂环境中的行人检测问题,提出了一种有效的基于分层稀疏编码的图像表示方法。首先通过两层稀疏编码模型结合基于K-SVD的深度学习算法来获得图像的稀疏表示,对图像块及同一区域的高阶依赖关系进行了建模,形成一个有效的无监督特征... 针对复杂环境中的行人检测问题,提出了一种有效的基于分层稀疏编码的图像表示方法。首先通过两层稀疏编码模型结合基于K-SVD的深度学习算法来获得图像的稀疏表示,对图像块及同一区域的高阶依赖关系进行了建模,形成一个有效的无监督特征学习方法;然后将得到的稀疏表示与SIFT描述符的稀疏表示进行特征融合,得到了更加全面、更加可判别的图像表示;最后结合SVM分类器应用于行人分类任务。实验结果表明,该行人分类方法对比同类方法在性能上有明显改善。 展开更多
关键词 行人分类 稀疏编码 空间金字塔匹配 特征融合 K—SVD
下载PDF
基于Edge Boxes的大型车辆车标检测与识别 被引量:3
11
作者 李熙莹 吕硕 +2 位作者 江倩殷 袁敏贤 余志 《计算机工程与应用》 CSCD 北大核心 2018年第12期152-159,共8页
传统车标检测与识别算法难以检测大型车辆车标,且速度较慢。提出了一种基于Edge Boxes的大型车辆车标检测与识别方法。Edge Boxes算法是一种成熟的图像分割算法,能够快速且有效地检测物体位置,满足大型车辆车标检测与识别问题的准确性... 传统车标检测与识别算法难以检测大型车辆车标,且速度较慢。提出了一种基于Edge Boxes的大型车辆车标检测与识别方法。Edge Boxes算法是一种成熟的图像分割算法,能够快速且有效地检测物体位置,满足大型车辆车标检测与识别问题的准确性及实时性的需求。该方法首先根据车标在车辆中的空间位置关系初选车标候选区,然后利用Edge Boxes算法进行目标提取,进而将提取得到的目标送入利用线性约束编码构建的车标检测分类器和车标识别分类器进行训练与识别,得到车标检测与识别结果。对不同卡口的不同天气和光照条件下采集的4 480张图像(含50类大型车辆)进行实验,实验结果表明,在检测与识别性能以及时间消耗方面均优于传统方法,具有良好的实用前景。 展开更多
关键词 大型车辆 车标检测与识别 Edge BOXES 线性约束编码 车标定位分类器 车标识别分类器
下载PDF
一种基于稀疏编码空间金字塔匹配的图像分类算法 被引量:2
12
作者 赵嵩 冯湘 《应用光学》 CAS CSCD 北大核心 2016年第5期706-711,共6页
图像分类技术是近年来计算机视觉领域中的研究热点,在移动互联网领域中取得了成功应用。提出了一种基于稀疏编码空间金字塔匹配的图像分类算法。该方法首先对图像的SIFT特征进行稀疏编码,替代了传统的矢量量化方法,可以有效降低量化误差... 图像分类技术是近年来计算机视觉领域中的研究热点,在移动互联网领域中取得了成功应用。提出了一种基于稀疏编码空间金字塔匹配的图像分类算法。该方法首先对图像的SIFT特征进行稀疏编码,替代了传统的矢量量化方法,可以有效降低量化误差,构建更为准确的图像表征方式,然后结合空间金字塔匹配算法采用线性分类器对图像进行分类识别。在标准测试图像数据库上的实验结果表明,相比BOF和SPM方法,该算法可以将图像分类准确率提高4%~12%。 展开更多
关键词 图像分类 稀疏编码 空间金字塔匹配 词袋模型
下载PDF
结合视觉显著性和空间金字塔的遥感图像机场检测 被引量:2
13
作者 郭雷 姚西文 +2 位作者 韩军伟 程塨 钱晓亮 《西北工业大学学报》 EI CAS CSCD 北大核心 2014年第1期98-101,共4页
提出一种结合视觉显著性和空间金字塔的遥感图像机场检测方法,首先根据改进的直线段检测算法对滑动窗口进行目标存在初步判断,只对可能含有目标的窗口按照空间金字塔表示方法提取该窗口中每一图像子块的稀疏编码,利用基于视觉显著性的... 提出一种结合视觉显著性和空间金字塔的遥感图像机场检测方法,首先根据改进的直线段检测算法对滑动窗口进行目标存在初步判断,只对可能含有目标的窗口按照空间金字塔表示方法提取该窗口中每一图像子块的稀疏编码,利用基于视觉显著性的特征抽取策略形成表征滑动窗口的全局特征向量,然后对该特征向量进行分类判别,得到滑动窗口含有目标的置信值,最后采用非极大值抑制完成机场检测。实验结果表明,该机场检测方法相比其他方法检测效率显著提高,并且具有识别率高、虚警率低的特点。 展开更多
关键词 机场检测 金字塔特征 视觉显著 稀疏编码 滑动窗口 直线段检测器
下载PDF
基于多层次视觉语义特征融合的图像检索算法 被引量:4
14
作者 张霞 郑逢斌 《包装工程》 CAS 北大核心 2018年第19期223-232,共10页
目的为了解决低层特征与中层语义属性间出现的语义鸿沟,以及在将低层特征转化为语义属性的过程中易丢失信息,从而会降低检索精度等问题,设计一种多层次视觉语义特征融合的图像检索算法。方法首先分别提取图像的3种中层特征(深度卷积神... 目的为了解决低层特征与中层语义属性间出现的语义鸿沟,以及在将低层特征转化为语义属性的过程中易丢失信息,从而会降低检索精度等问题,设计一种多层次视觉语义特征融合的图像检索算法。方法首先分别提取图像的3种中层特征(深度卷积神经网络(DCNN)特征、Fisher向量、稀疏编码空间金字塔匹配特征(SCSPM));其次,为了对3种特征进行有效融合,定义一种基于图的半监督学习模型,将提取的3个中层特征进行融合,形成一个多层次视觉语义特征,有效结合3种不同中层特征的互补信息,提高图像特征描述,从而降低检索算法中的语义鸿沟;最后,引入具有视觉特性与语义统一的距离函数,根据提取的多层次视觉语义特征来计算查询图像和训练图像的相似度量,完成图像检索任务。结果实验结果表明,与当前检索方法对比,文中算法具有更高的检索精度与效率。结论所提算法具有良好的检索准确度,在医疗、包装商标等领域具有一定的参考价值。 展开更多
关键词 图像检索 深度卷积神经网络 Fisher向量 稀疏编码空间金字塔匹配 多层次视觉语义特征 半监督学习
下载PDF
结合稀疏表示和均值偏移的运动目标跟踪算法 被引量:5
15
作者 孙凯 谢林柏 《计算机工程与应用》 CSCD 北大核心 2017年第9期195-200,共6页
为了当出现目标尺度变化、方向变化、环境光照变化、目标部分遮挡等问题时,使得视觉跟踪算法具有更好的鲁棒性,提出一种结合稀疏编码和空间金字塔模型以及均值漂移的算法。首先扩展经典Meanshift算法使它不仅估计位置空间变化,还估计方... 为了当出现目标尺度变化、方向变化、环境光照变化、目标部分遮挡等问题时,使得视觉跟踪算法具有更好的鲁棒性,提出一种结合稀疏编码和空间金字塔模型以及均值漂移的算法。首先扩展经典Meanshift算法使它不仅估计位置空间变化,还估计方向和尺度空间的变化。然后加入像素密度块采样技术和琐碎模板设计方案使直方图匹配更加准确,有效克服光照变化。最后取代原有算法中要么使用整体表示要么使用局部表示目标特征的方法,使得空间金字塔模型与两种表示方法相结合,有效解决目标遮挡等问题。实验表明,该算法实验结果明显优于同类算法,能很好地解决目标尺度变化、环境光照变化、目标部分遮挡等问题。 展开更多
关键词 均值漂移 尺度空间 稀疏编码 空间金字塔 部分遮挡
下载PDF
基于ScSPM-Reranking的高分辨率遥感影像的检索
16
作者 弓永利 朱盼盼 王跃宾 《高技术通讯》 北大核心 2017年第4期335-341,共7页
为了从高分辨率遥感影像中获取详细的地表地物信息,为城市规划、环境监测以及灾情分析提供可靠的数据,进行了高分辨率遥感影像的检索研究,包括对图像的特征提取和图像之间相似度的描述。为了提高图像检索精度,运用了采用稀疏编码(Sc)的... 为了从高分辨率遥感影像中获取详细的地表地物信息,为城市规划、环境监测以及灾情分析提供可靠的数据,进行了高分辨率遥感影像的检索研究,包括对图像的特征提取和图像之间相似度的描述。为了提高图像检索精度,运用了采用稀疏编码(Sc)的空间塔式匹配(Sc SPM)技术和重排序(Reranking)技术,提出了基于Sc SPM结合Reranking(ScSPM-Reranking)的遥感高分辨率影像的检索方法。该方法首先使用Sc SPM提取空间场景的特征,然后结合这些特征使用cityblock距离进行初步检索,最后对初步检索的结果进行Reranking排序,获得高精度的检索结果。同其他检索方法进行了对比实验,实验结果证明,该方法具有较高的检索精度。 展开更多
关键词 高分辨率遥感影像 图像特征描述 图像检索 RERANKING 稀疏编码(Sc) 空间塔式匹配(SPM)
下载PDF
子区域视觉短语稀疏编码的图像检索
17
作者 王瑞霞 彭国华 《西北工业大学学报》 EI CAS CSCD 北大核心 2015年第5期721-726,共6页
针对BOVW模型忽略图像特征空间排列导致量化误差较大的缺点,利用角点和特征点对图像进行区域分割,结合区域的空间排列信息,提出一种多通道融合的图像检索方法。其主要思想是将子区域编码和特征空间排列直方图结合组建视觉短语,这种构造... 针对BOVW模型忽略图像特征空间排列导致量化误差较大的缺点,利用角点和特征点对图像进行区域分割,结合区域的空间排列信息,提出一种多通道融合的图像检索方法。其主要思想是将子区域编码和特征空间排列直方图结合组建视觉短语,这种构造方式在减少编码误差的同时还能更好地保留局部空间信息。首先,利用稀疏编码保留局部信息的高效性对提取的子区域进行编码;其次,利用特征的空间位置关系,计算子区域内的特征空间排列直方图;利用区域编码和特征排列直方图构建视觉短语;最后,结合BOVW模型的鲁棒性,统计视觉短语直方图用于图像检索。实验结果表明,该检索方法不仅比BOVW和SPMBOVM有更好的检索准确率,而且其编码过程稳定,误差较小。 展开更多
关键词 角点 BOVW模型 视觉短语 稀疏编码 图像检索 SPM模型
下载PDF
基于语义短语的空间金字塔词袋模型图像分类方法 被引量:8
18
作者 生海迪 段会川 孔超 《小型微型计算机系统》 CSCD 北大核心 2015年第4期877-881,共5页
针对空间金字塔词袋模型缺少对局部特征之间语义分布关系的表达,提出了一种基于语义短语的空间金字塔词袋模型图像表示方法.首先,将局部特征映射为具有一定语义信息的视觉单词,通过统计局部特征邻域范围内其他相关特征点的语义分布情况... 针对空间金字塔词袋模型缺少对局部特征之间语义分布关系的表达,提出了一种基于语义短语的空间金字塔词袋模型图像表示方法.首先,将局部特征映射为具有一定语义信息的视觉单词,通过统计局部特征邻域范围内其他相关特征点的语义分布情况来构造语义短语.其次,将语义短语采用稀疏编码进行量化生成语义词典,图像则表示成基于语义词典的空间金字塔式稀疏统计直方图向量.最后,将图像表示向量代入分类器中进行训练和测试.实验结果表明,本文方法能够较大幅度地提高图像分类的准确率. 展开更多
关键词 词袋模型 语义短语 稀疏编码 空间金字塔
下载PDF
基于ScSPM算法的蛹虫草长势识别研究
19
作者 万华 谢志亨 涂淑琴 《现代计算机》 2018年第18期46-49,共4页
蛹虫草是我国一种珍贵的药食两用菌,具有重要的经济价值。但目前蛹虫草长势判断完全依赖人工作业,导致种植生产效率低下。应用稀疏编码的空间金字塔匹配(ScSPM)方法实现对蛹虫草四个生长阶段的自动识别。首先将蛹虫草图像转化为RGB颜色... 蛹虫草是我国一种珍贵的药食两用菌,具有重要的经济价值。但目前蛹虫草长势判断完全依赖人工作业,导致种植生产效率低下。应用稀疏编码的空间金字塔匹配(ScSPM)方法实现对蛹虫草四个生长阶段的自动识别。首先将蛹虫草图像转化为RGB颜色通道信息提取其SIFT特征;然后利用ScSPM获取其高层特征;最后输入线性支持向量机(SVM)实现不同生长阶段的自动判别。实验数据表明平均识别准确率超过93%。该研究为以后的蛹虫草长势智能监控提供技术支持,提高其生产效率。 展开更多
关键词 蛹虫草 长势识别 稀疏编码空间金字塔匹配(ScSPM) SIFT特征
下载PDF
基于多尺度特征融合Hessian稀疏编码的图像分类算法 被引量:3
20
作者 刘盛清 孙季丰 +1 位作者 余家林 宋治国 《计算机应用》 CSCD 北大核心 2017年第12期3517-3522,共6页
针对传统稀疏编码图像分类算法提取单一类型特征,忽略图像的空间结构信息,特征编码时无法充分利用特征拓扑结构信息的问题,提出了基于多尺度特征融合Hessian稀疏编码的图像分类算法(HSC)。首先,对图像进行空间金字塔多尺度划分;其次,在... 针对传统稀疏编码图像分类算法提取单一类型特征,忽略图像的空间结构信息,特征编码时无法充分利用特征拓扑结构信息的问题,提出了基于多尺度特征融合Hessian稀疏编码的图像分类算法(HSC)。首先,对图像进行空间金字塔多尺度划分;其次,在各个子空间层将方向梯度直方图(HOG)和尺度不变特征转换(SIFT)进行有效的融合;然后,为了充分利用特征的拓扑结构信息,在传统稀疏编码目标函数中引入二阶Hessian能量函数作为正则项;最后,利用支持向量机(SVM)进行分类。在Scene15数据集上的实验结果表明,HSC的准确率比局部约束线性编码(LLC)高了3~5个百分点,比支持区别性字典学习(SDDL)等对比方法高了1~3个百分点;在Caltech101数据集上的耗时实验结果表明,HSC的用时比多核学习稀疏编码(MKLSC)少40%左右。所提HSC可以有效提高图像分类准确率,算法的效率也优于对比算法。 展开更多
关键词 图像分类 特征融合 空间金字塔 稀疏编码 支持向量机
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部