期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Three-dimensional pseudo-dynamic reliability analysis of seismic shield tunnel faces combined with sparse polynomial chaos expansion
1
作者 GUO Feng-qi LI Shi-wei ZOU Jin-Feng 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期2087-2101,共15页
To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on ... To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on the upper-bound theory of limit analysis,an improved three-dimensional discrete deterministic mechanism,accounting for the heterogeneous nature of soil media,is formulated to evaluate seismic face stability.The metamodel of failure probabilistic assessments for seismic tunnel faces is constructed by integrating the sparse polynomial chaos expansion method(SPCE)with the modified pseudo-dynamic approach(MPD).The improved deterministic model is validated by comparing with published literature and numerical simulations results,and the SPCE-MPD metamodel is examined with the traditional MCS method.Based on the SPCE-MPD metamodels,the seismic effects on face failure probability and reliability index are presented and the global sensitivity analysis(GSA)is involved to reflect the influence order of seismic action parameters.Finally,the proposed approach is tested to be effective by a engineering case of the Chengdu outer ring tunnel.The results show that higher uncertainty of seismic response on face stability should be noticed in areas with intense earthquakes and variation of seismic wave velocity has the most profound influence on tunnel face stability. 展开更多
关键词 reliability analysis shield tunnel face sparse polynomial chaos expansion modified pseudo-dynamic approach seismic stability assessment
下载PDF
Data-driven sparse polynomial chaos expansion for models with dependent inputs
2
作者 Zhanlin Liu Youngjun Choe 《Journal of Safety Science and Resilience》 EI CSCD 2023年第4期358-365,共8页
Polynomial chaos expansions(PCEs)have been used in many real-world engineering applications to quantify how the uncertainty of an output is propagated from inputs by decomposing the output in terms of polynomials of t... Polynomial chaos expansions(PCEs)have been used in many real-world engineering applications to quantify how the uncertainty of an output is propagated from inputs by decomposing the output in terms of polynomials of the inputs.PCEs for models with independent inputs have been extensively explored in the literature.Recently,different approaches have been proposed for models with dependent inputs to expand the use of PCEs to more real-world applications.Typical approaches include building PCEs based on the Gram–Schmidt algorithm or transforming the dependent inputs into independent inputs.However,the two approaches have their limitations regarding computational efficiency and additional assumptions about the input distributions,respectively.In this paper,we propose a data-driven approach to build sparse PCEs for models with dependent inputs without any distributional assumptions.The proposed algorithm recursively constructs orthonormal polynomials using a set of monomials based on their correlations with the output.The proposed algorithm on building sparse PCEs not only reduces the number of minimally required observations but also improves the numerical stability and computational efficiency.Four numerical examples are implemented to validate the proposed algorithm.The source code is made publicly available for reproducibility. 展开更多
关键词 Uncertainty quantification Polynomial chaos expansion sparse polynomial chaos expansion Gram-Schmidt orthogonalization
原文传递
Efficient Probabilistic Load Flow Calculation Considering Vine Copula⁃Based Dependence Structure of Renewable Energy Generation 被引量:2
3
作者 MA Hongyan WANG Han +2 位作者 XU Xiaoyuan YAN Zheng MAO Guijiang 《Journal of Donghua University(English Edition)》 CAS 2021年第5期465-470,共6页
Correlations among random variables make significant impacts on probabilistic load flow(PLF)calculation results.In the existing studies,correlation coefficients or Gaussian copula are usually used to model the correla... Correlations among random variables make significant impacts on probabilistic load flow(PLF)calculation results.In the existing studies,correlation coefficients or Gaussian copula are usually used to model the correlations,while vine copula,which describes the complex dependence structure(DS)of random variables,is seldom discussed since it brings in much heavier computational burdens.To overcome this problem,this paper proposes an efficient PLF method considering input random variables with complex DS.Specifically,the Rosenblatt transformation(RT)is used to transform vine copula⁃based correlated variables into independent ones;and then the sparse polynomial chaos expansion(SPCE)evaluates output random variables of PLF calculation.The effectiveness of the proposed method is verified using the IEEE 123⁃bus system. 展开更多
关键词 probabilistic load flow(PLF) vine copula sparse polynomial chaos expansion(SPCE) Rosenblatt transformation(RT)
下载PDF
A Gradient-Enhanced ℓ_(1)Approach for the Recovery of Sparse Trigonometric Polynomials
4
作者 Zhiqiang Xu Tao Zhou 《Communications in Computational Physics》 SCIE 2018年第6期286-308,共23页
In this paper,we discuss a gradient-enhancedℓ_(1)approach for the recovery of sparse Fourier expansions.By gradient-enhanced approaches we mean that the directional derivatives along given vectors are utilized to impr... In this paper,we discuss a gradient-enhancedℓ_(1)approach for the recovery of sparse Fourier expansions.By gradient-enhanced approaches we mean that the directional derivatives along given vectors are utilized to improve the sparse approximations.We first consider the case where both the function values and the directional derivatives at sampling points are known.We show that,under some mild conditions,the inclusion of the derivatives information can indeed decrease the coherence of measurementmatrix,and thus leads to the improved the sparse recovery conditions of theℓ_(1)minimization.We also consider the case where either the function values or the directional derivatives are known at the sampling points,in which we present a sufficient condition under which the measurement matrix satisfies RIP,provided that the samples are distributed according to the uniform measure.This result shows that the derivatives information plays a similar role as that of the function values.Several numerical examples are presented to support the theoretical statements.Potential applications to function(Hermite-type)interpolations and uncertainty quantification are also discussed. 展开更多
关键词 Gradient-enhancedℓ_(1)minimization compressed sensing sparse Fourier expansions restricted isometry property mutual incoherence
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部