期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Compressive Sensing Approach in Multicarrier Sparsely Indexing Modulation Systems 被引量:1
1
作者 Mostafa Salah Osama A.Omer Usama S.Mohamed 《China Communications》 SCIE CSCD 2017年第11期151-166,共16页
recently the indexed modulation(IM) technique in conjunction with the multi-carrier modulation gains an increasing attention. It conveys additional information on the subcarrier indices by activating specific subcarri... recently the indexed modulation(IM) technique in conjunction with the multi-carrier modulation gains an increasing attention. It conveys additional information on the subcarrier indices by activating specific subcarriers in the frequency domain besides the conventional amplitude-phase modulation of the activated subcarriers. Orthogonal frequency division multiplexing(OFDM) with IM(OFDM-IM) is deeply compared with the classical OFDM. It leads to an attractive trade-off between the spectral efficiency(SE) and the energy efficiency(EE). In this paper, the concept of the combinatorial modulation is introduced from a new point of view. The sparsity mapping is suggested intentionally to enable the compressive sensing(CS) concept in the data recovery process to provide further performance and EE enhancement without SE loss. Generating artificial data sparsity in the frequency domain along with naturally embedded channel sparsity in the time domain allows joint data recovery and channel estimation in a double sparsity framework. Based on simulation results, the performance of the proposed approach agrees with the predicted CS superiority even under low signal-to-noise ratio without channel coding. Moreover, the proposed sparsely indexed modulation system outperforms the conventional OFDM system and the OFDM-IM system in terms of error performance, peak-to-average power ratio(PAPR) and energy efficiency under the same spectral efficiency. 展开更多
关键词 indexed modulation combinatorial modulation double sparsity critical sparsity sparsely indexed modulation OFDM-IM
下载PDF
Parallel Solutions for Large-Scale General Sparse Nonlinear Systems of Equations 被引量:1
2
作者 胡承毅 《Journal of Computer Science & Technology》 SCIE EI CSCD 1996年第3期257-271,共15页
In solving application problems, many largesscale nonlinear systems of equations result in sparse Jacobian matrices. Such nonlinear systems are called sparse nonlinear systems. The irregularity of the locations of non... In solving application problems, many largesscale nonlinear systems of equations result in sparse Jacobian matrices. Such nonlinear systems are called sparse nonlinear systems. The irregularity of the locations of nonzero elements of a general sparse matrix makes it very difficult to generally map sparse matrix computations to multiprocessors for parallel processing in a well balanced manner. To overcome this difficulty, we define a new storage scheme for general sparse matrices in this paper. With the new storage scheme, we develop parallel algorithms to solve large-scale general sparse systems of equations by interval Newton/Generalized bisection methods which reliably find all numerical solutions within a given domain.In Section 1, we provide an introduction to the addressed problem and the interval Newton's methods. In Section 2, some currently used storage schemes for sparse sys-terns are reviewed. In Section 3, new index schemes to store general sparse matrices are reported. In Section 4, we present a parallel algorithm to evaluate a general sparse Jarobian matrix. In Section 5, we present a parallel algorithm to solve the correspond-ing interval linear 8ystem by the all-row preconditioned scheme. Conclusions and future work are discussed in Section 6. 展开更多
关键词 Nonlinear systems of equations sparse matrix index storage schemes interval Newton/generalized bisection algorithm parallel algorithm
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部