Underwater acoustic channels are recognized for being one of the most difficult propagation media due to considerable difficulties such as: multipath, ambient noise, time-frequency selective fading. The exploitation ...Underwater acoustic channels are recognized for being one of the most difficult propagation media due to considerable difficulties such as: multipath, ambient noise, time-frequency selective fading. The exploitation of sparsity contained in underwater acoustic channels provides a potential solution to improve the performance of underwater acoustic channel estimation. Compared with the classic 10 and 11 norm constraint LMS algorithms, the p-norm-like (Ip) constraint LMS algorithm proposed in our previous investigation exhibits better sparsity exploitation performance at the presence of channel variations, as it enables the adaptability to the sparseness by tuning of p parameter. However, the decimal exponential calculation associated with the p-norm-like constraint LMS algorithm poses considerable limitations in practical application. In this paper, a simplified variant of the p-norm-like constraint LMS was proposed with the employment of Newton iteration m to approximate the decimal exponential calculation. Num simulations and the experimental results obtained in physical shallow water channels demonstrate the effectiveness of the proposed method compared to traditional norm constraint LMS algorithms.展开更多
Least-squares reverse-time migration(LSRTM) formulates reverse-time migration(RTM) in the leastsquares inversion framework to obtain the optimal reflectivity image. It can generate images with more accurate amplitudes...Least-squares reverse-time migration(LSRTM) formulates reverse-time migration(RTM) in the leastsquares inversion framework to obtain the optimal reflectivity image. It can generate images with more accurate amplitudes, higher resolution, and fewer artifacts than RTM. However, three problems still exist:(1) inversion can be dominated by strong events in the residual;(2) low-wavenumber artifacts in the gradient affect convergence speed and imaging results;(3) high-wavenumber noise is also amplified as iteration increases. To solve these three problems, we have improved LSRTM: firstly, we use Hubernorm as the objective function to emphasize the weak reflectors during the inversion;secondly, we adapt the de-primary imaging condition to remove the low-wavenumber artifacts above strong reflectors as well as the false high-wavenumber reflectors in the gradient;thirdly, we apply the L1-norm sparse constraint in the curvelet-domain as the regularization term to suppress the high-wavenumber migration noise. As the new inversion objective function contains the non-smooth L1-norm, we use a modified iterative soft thresholding(IST) method to update along the Polak-Ribie re conjugate-gradient direction by using a preconditioned non-linear conjugate-gradient(PNCG) method. The numerical examples,especially the Sigsbee2 A model, demonstrate that the Huber inversion-based RTM can generate highquality images by mitigating migration artifacts and improving the contribution of weak reflection events.展开更多
Color image super-resolution reconstruction based on the sparse representation model usually adopts the regularization norm(e.g.,L1 or L2).These methods have limited ability to keep image texture detail to some extent...Color image super-resolution reconstruction based on the sparse representation model usually adopts the regularization norm(e.g.,L1 or L2).These methods have limited ability to keep image texture detail to some extent and are easy to cause the problem of blurring details and color artifacts in color reconstructed images.This paper presents a color super-resolution reconstruction method combining the L2/3 sparse regularization model with color channel constraints.The method converts the low-resolution color image from RGB to YCbCr.The L2/3 sparse regularization model is designed to reconstruct the brightness channel of the input low-resolution color image.Then the color channel-constraint method is adopted to remove artifacts of the reconstructed highresolution image.The method not only ensures the reconstruction quality of the color image details,but also improves the removal ability of color artifacts.The experimental results on natural images validate that our method has improved both subjective and objective evaluation.展开更多
Abstract:Sparse coding(SC)based visual tracking(l1-tracker)is gaining increasing attention,and many related algorithms are developed.In these algorithms,each candidate region is sparsely represented as a set of target...Abstract:Sparse coding(SC)based visual tracking(l1-tracker)is gaining increasing attention,and many related algorithms are developed.In these algorithms,each candidate region is sparsely represented as a set of target templates.However,the structure connecting these candidate regions is usually ignored.Lu proposed an NLSSC-tracker with non-local self-similarity sparse coding to address this issue,which has a high computational cost.In this study,we propose an Euclidean local-structure constraint based sparse coding tracker with a smoothed Euclidean local structure.With this tracker,the optimization procedure is transformed to a small-scale l1-optimization problem,significantly reducing the computational cost.Extensive experimental results on visual tracking demonstrate the eectiveness and efficiency of the proposed algorithm.展开更多
The estimation of sparse underwater acoustic channels with a large time delay spread is investigated under the framework of compressed sensing. For these types of channels, the excessively long impulse response will s...The estimation of sparse underwater acoustic channels with a large time delay spread is investigated under the framework of compressed sensing. For these types of channels, the excessively long impulse response will significantly degrade the convergence rate and tracking capability of the traditional estimation algorithms such as least squares (LS), while excluding the use of the delay-Doppler spread function due to huge computational complexity. By constructing a Toeplitz matrix with a training sequence as the measurement matrix, the estimation problem of long sparse acoustic channels is formulated into a compressed sensing problem to facilitate the efficient exploitation of sparsity. Furthermore, unlike the traditional l1 norm or exponent-based approximation l0 norm sparse recovery strategy, a novel variant of approximate l0 norm called AL0 is proposed, minimization of which leads to the derivation of a hybrid approach by iteratively projecting the steepest descent solution to the feasible set. Numerical simulations as well as sea trial experiments are compared and analyzed to demonstrate the superior performance of the proposed algorithm.展开更多
This research proposes a novel three-dimensional gravity inversion based on sparse recovery in compress sensing. Zero norm is selected as the objective function, which is then iteratively solved by the approximate zer...This research proposes a novel three-dimensional gravity inversion based on sparse recovery in compress sensing. Zero norm is selected as the objective function, which is then iteratively solved by the approximate zero norm solution. The inversion approach mainly employs forward modeling; a depth weight function is introduced into the objective function of the zero norms. Sparse inversion results are obtained by the corresponding optimal mathematical method. To achieve the practical geophysical and geological significance of the results, penalty function is applied to constrain the density values. Results obtained by proposed provide clear boundary depth and density contrast distribution information. The method's accuracy, validity, and reliability are verified by comparing its results with those of synthetic models. To further explain its reliability, a practical gravity data is obtained for a region in Texas, USA is applied. Inversion results for this region are compared with those of previous studies, including a research of logging data in the same area. The depth of salt dome obtained by the inversion method is 4.2 km, which is in good agreement with the 4.4 km value from the logging data. From this, the practicality of the inversion method is also validated.展开更多
Sparsity constrained deconvolution can improve the resolution of band-limited seismic data compared to conventional deconvolution. However, such deconvolution methods result in nonunique solutions and suppress weak re...Sparsity constrained deconvolution can improve the resolution of band-limited seismic data compared to conventional deconvolution. However, such deconvolution methods result in nonunique solutions and suppress weak reflections. The Cauchy function, modified Cauchy function, and Huber function are commonly used constraint criteria in sparse deconvolution. We used numerical experiments to analyze the ability of sparsity constrained deconvolution to restore reflectivity sequences and protect weak reflections under different constraint criteria. The experimental results demonstrate that the performance of sparsity constrained deconvolution depends on the agreement between the constraint criteria and the probability distribution of the reflectivity sequences; furthermore, the modified Cauchy- constrained criterion protects the weak reflections better than the other criteria. Based on the model experiments, the probability distribution of the reflectivity sequences of carbonate and clastic formations is statistically analyzed by using well-logging data and then the modified Cauchy-constrained deconvolution is applied to real seismic data much improving the resolution.展开更多
基金Supported by the National Natural Science Foundation of China (No.11274259) and the Specialized Research Foundation for the Doctoral Program of Higher Education of China (No.20120121110030).
文摘Underwater acoustic channels are recognized for being one of the most difficult propagation media due to considerable difficulties such as: multipath, ambient noise, time-frequency selective fading. The exploitation of sparsity contained in underwater acoustic channels provides a potential solution to improve the performance of underwater acoustic channel estimation. Compared with the classic 10 and 11 norm constraint LMS algorithms, the p-norm-like (Ip) constraint LMS algorithm proposed in our previous investigation exhibits better sparsity exploitation performance at the presence of channel variations, as it enables the adaptability to the sparseness by tuning of p parameter. However, the decimal exponential calculation associated with the p-norm-like constraint LMS algorithm poses considerable limitations in practical application. In this paper, a simplified variant of the p-norm-like constraint LMS was proposed with the employment of Newton iteration m to approximate the decimal exponential calculation. Num simulations and the experimental results obtained in physical shallow water channels demonstrate the effectiveness of the proposed method compared to traditional norm constraint LMS algorithms.
基金supported by National Key R&D Program of China (No. 2018YFA0702502)NSFC (Grant No. 41974142, 42074129, and 41674114)+1 种基金Science Foundation of China University of Petroleum (Beijing) (Grant No. 2462020YXZZ005)State Key Laboratory of Petroleum Resources and Prospecting (Grant No. PRP/indep-42012)。
文摘Least-squares reverse-time migration(LSRTM) formulates reverse-time migration(RTM) in the leastsquares inversion framework to obtain the optimal reflectivity image. It can generate images with more accurate amplitudes, higher resolution, and fewer artifacts than RTM. However, three problems still exist:(1) inversion can be dominated by strong events in the residual;(2) low-wavenumber artifacts in the gradient affect convergence speed and imaging results;(3) high-wavenumber noise is also amplified as iteration increases. To solve these three problems, we have improved LSRTM: firstly, we use Hubernorm as the objective function to emphasize the weak reflectors during the inversion;secondly, we adapt the de-primary imaging condition to remove the low-wavenumber artifacts above strong reflectors as well as the false high-wavenumber reflectors in the gradient;thirdly, we apply the L1-norm sparse constraint in the curvelet-domain as the regularization term to suppress the high-wavenumber migration noise. As the new inversion objective function contains the non-smooth L1-norm, we use a modified iterative soft thresholding(IST) method to update along the Polak-Ribie re conjugate-gradient direction by using a preconditioned non-linear conjugate-gradient(PNCG) method. The numerical examples,especially the Sigsbee2 A model, demonstrate that the Huber inversion-based RTM can generate highquality images by mitigating migration artifacts and improving the contribution of weak reflection events.
基金supported by the National Natural Science Foundation of China(61761028)。
文摘Color image super-resolution reconstruction based on the sparse representation model usually adopts the regularization norm(e.g.,L1 or L2).These methods have limited ability to keep image texture detail to some extent and are easy to cause the problem of blurring details and color artifacts in color reconstructed images.This paper presents a color super-resolution reconstruction method combining the L2/3 sparse regularization model with color channel constraints.The method converts the low-resolution color image from RGB to YCbCr.The L2/3 sparse regularization model is designed to reconstruct the brightness channel of the input low-resolution color image.Then the color channel-constraint method is adopted to remove artifacts of the reconstructed highresolution image.The method not only ensures the reconstruction quality of the color image details,but also improves the removal ability of color artifacts.The experimental results on natural images validate that our method has improved both subjective and objective evaluation.
基金National Natural Foundation of China under Grant(61572085,61502058)
文摘Abstract:Sparse coding(SC)based visual tracking(l1-tracker)is gaining increasing attention,and many related algorithms are developed.In these algorithms,each candidate region is sparsely represented as a set of target templates.However,the structure connecting these candidate regions is usually ignored.Lu proposed an NLSSC-tracker with non-local self-similarity sparse coding to address this issue,which has a high computational cost.In this study,we propose an Euclidean local-structure constraint based sparse coding tracker with a smoothed Euclidean local structure.With this tracker,the optimization procedure is transformed to a small-scale l1-optimization problem,significantly reducing the computational cost.Extensive experimental results on visual tracking demonstrate the eectiveness and efficiency of the proposed algorithm.
基金The National Natural Science Foundation of China(No.11274259)the Open Project Program of the Key Laboratory of Underwater Acoustic Signal Processing of Ministry of Education(No.UASP1305)
文摘The estimation of sparse underwater acoustic channels with a large time delay spread is investigated under the framework of compressed sensing. For these types of channels, the excessively long impulse response will significantly degrade the convergence rate and tracking capability of the traditional estimation algorithms such as least squares (LS), while excluding the use of the delay-Doppler spread function due to huge computational complexity. By constructing a Toeplitz matrix with a training sequence as the measurement matrix, the estimation problem of long sparse acoustic channels is formulated into a compressed sensing problem to facilitate the efficient exploitation of sparsity. Furthermore, unlike the traditional l1 norm or exponent-based approximation l0 norm sparse recovery strategy, a novel variant of approximate l0 norm called AL0 is proposed, minimization of which leads to the derivation of a hybrid approach by iteratively projecting the steepest descent solution to the feasible set. Numerical simulations as well as sea trial experiments are compared and analyzed to demonstrate the superior performance of the proposed algorithm.
基金supported by the Development of airborne gravity gradiometer(No.2017YFC0601601)open subject of Key Laboratory of Petroleum Resources Research,Institute of Geology and Geophysics,Chinese Academy of Sciences(No.KLOR2018-8)
文摘This research proposes a novel three-dimensional gravity inversion based on sparse recovery in compress sensing. Zero norm is selected as the objective function, which is then iteratively solved by the approximate zero norm solution. The inversion approach mainly employs forward modeling; a depth weight function is introduced into the objective function of the zero norms. Sparse inversion results are obtained by the corresponding optimal mathematical method. To achieve the practical geophysical and geological significance of the results, penalty function is applied to constrain the density values. Results obtained by proposed provide clear boundary depth and density contrast distribution information. The method's accuracy, validity, and reliability are verified by comparing its results with those of synthetic models. To further explain its reliability, a practical gravity data is obtained for a region in Texas, USA is applied. Inversion results for this region are compared with those of previous studies, including a research of logging data in the same area. The depth of salt dome obtained by the inversion method is 4.2 km, which is in good agreement with the 4.4 km value from the logging data. From this, the practicality of the inversion method is also validated.
基金supported by the Major Basic Research Development Program of China (973 Program)(No.2013CB228606)the National Science foundation of China (No.41174117)+1 种基金the National Major Science-Technology Project (No.2011ZX05031-001)Innovation Fund of PetroChina (No.2010D-5006-0301)
文摘Sparsity constrained deconvolution can improve the resolution of band-limited seismic data compared to conventional deconvolution. However, such deconvolution methods result in nonunique solutions and suppress weak reflections. The Cauchy function, modified Cauchy function, and Huber function are commonly used constraint criteria in sparse deconvolution. We used numerical experiments to analyze the ability of sparsity constrained deconvolution to restore reflectivity sequences and protect weak reflections under different constraint criteria. The experimental results demonstrate that the performance of sparsity constrained deconvolution depends on the agreement between the constraint criteria and the probability distribution of the reflectivity sequences; furthermore, the modified Cauchy- constrained criterion protects the weak reflections better than the other criteria. Based on the model experiments, the probability distribution of the reflectivity sequences of carbonate and clastic formations is statistically analyzed by using well-logging data and then the modified Cauchy-constrained deconvolution is applied to real seismic data much improving the resolution.