期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Multimodality Prediction of Chaotic Time Series with Sparse Hard-Cut EM Learning of the Gaussian Process Mixture Model 被引量:1
1
作者 周亚同 樊煜 +1 位作者 陈子一 孙建成 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第5期22-26,共5页
The contribution of this work is twofold: (1) a multimodality prediction method of chaotic time series with the Gaussian process mixture (GPM) model is proposed, which employs a divide and conquer strategy. It au... The contribution of this work is twofold: (1) a multimodality prediction method of chaotic time series with the Gaussian process mixture (GPM) model is proposed, which employs a divide and conquer strategy. It automatically divides the chaotic time series into multiple modalities with different extrinsic patterns and intrinsic characteristics, and thus can more precisely fit the chaotic time series. (2) An effective sparse hard-cut expec- tation maximization (SHC-EM) learning algorithm for the GPM model is proposed to improve the prediction performance. SHO-EM replaces a large learning sample set with fewer pseudo inputs, accelerating model learning based on these pseudo inputs. Experiments on Lorenz and Chua time series demonstrate that the proposed method yields not only accurate multimodality prediction, but also the prediction confidence interval SHC-EM outperforms the traditional variational 1earning in terms of both prediction accuracy and speed. In addition, SHC-EM is more robust and insusceptible to noise than variational learning. 展开更多
关键词 GPM Multimodality Prediction of Chaotic Time Series with sparse Hard-Cut EM Learning of the Gaussian process Mixture Model EM SHC
下载PDF
Two-Dimensional Direction Finding via Sequential Sparse Representations
2
作者 Yougen Xu Ying Lu +1 位作者 Yulin Huang Zhiwen Liu 《Journal of Beijing Institute of Technology》 EI CAS 2018年第2期169-175,共7页
The problem of two-dimensional direction finding is approached by using a multi-layer Lshaped array. The proposed method is based on two sequential sparse representations,fulfilling respectively the estimation of elev... The problem of two-dimensional direction finding is approached by using a multi-layer Lshaped array. The proposed method is based on two sequential sparse representations,fulfilling respectively the estimation of elevation angles,and azimuth angles. For the estimation of elevation angles,the weighted sub-array smoothing technique for perfect data decorrelation is used to produce a covariance vector suitable for exact sparse representation,related only to the elevation angles. The estimates of elevation angles are then obtained by sparse restoration associated with this elevation angle dependent covariance vector. The estimates of elevation angles are further incorporated with weighted sub-array smoothing to yield a second covariance vector for precise sparse representation related to both elevation angles,and azimuth angles. The estimates of azimuth angles,automatically paired with the estimates of elevation angles,are finally obtained by sparse restoration associated with this latter elevation-azimuth angle related covariance vector. Simulation results are included to illustrate the performance of the proposed method. 展开更多
关键词 array signal processing adaptive array direction finding sparse representation
下载PDF
Current progress in sparse signal processing applied to radar imaging 被引量:6
3
作者 ZHAO Yao FENG Jing +2 位作者 ZHANG BingChen HONG Wen WU YiRong 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第12期3049-3054,共6页
Sparse signal processing is a signal processing technique that takes advantage of signal’s sparsity,allowing signal to be recovered with a reduced number of samples.Compressive sensing,a new branch of the sparse sign... Sparse signal processing is a signal processing technique that takes advantage of signal’s sparsity,allowing signal to be recovered with a reduced number of samples.Compressive sensing,a new branch of the sparse signal processing,has become a rapidly growing research field.Sparse microwave imaging introduces the sparse signal processing theory to radar imaging to obtain new theories,new systems and new methodologies of microwave imaging.This paper first summarizes the latest application of sparse microwave imaging,including Synthetic Aperture Radar(SAR),tomographic SAR and inverse SAR.As sparse signal processing keeps evolving,an avalanche of results have been obtained.We also highlight its recent theoretical advances,including structured sparsity,off-grid,Bayesian approaches,and point out new research directions in sparse microwave imaging. 展开更多
关键词 sparse signal processing sparse microwave imaging compressive sensing radar imaging
原文传递
Experimental demonstration of enhanced resolution of a Golay3 sparse-aperture telescope 被引量:3
4
作者 谢宗良 马浩统 +6 位作者 亓波 任戈 史建亮 何小君 谭玉凤 董理 王智鹏 《Chinese Optics Letters》 SCIE EI CAS CSCD 2017年第4期30-33,共4页
In this Letter,we report a Golay3 sparse-aperture telescope newly built in the Key Laboratory of Optical Engineering,Chinese Academy of Sciences and present the experimental results of enhanced resolution.The telescop... In this Letter,we report a Golay3 sparse-aperture telescope newly built in the Key Laboratory of Optical Engineering,Chinese Academy of Sciences and present the experimental results of enhanced resolution.The telescope consisting of 3 collector telescopes of 127 mm diameter can achieve a theoretical resolution corresponding to a monolithic aperture of 245 mm diameter.It is shown by the experimental results that the resolution is improved to 3.33μrad with respect to the diffraction limit of 6.07μrad for a single aperture using the Rayleigh criteria at 632 nm.The compact optical configuration and cophasing approach are also described. 展开更多
关键词 aperture sparse Golay demonstration Rayleigh telescope processed scene collector illumination
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部