期刊文献+
共找到28篇文章
< 1 2 >
每页显示 20 50 100
Sparse Reconstructive Evidential Clustering for Multi-View Data
1
作者 Chaoyu Gong Yang You 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期459-473,共15页
Although many multi-view clustering(MVC) algorithms with acceptable performances have been presented, to the best of our knowledge, nearly all of them need to be fed with the correct number of clusters. In addition, t... Although many multi-view clustering(MVC) algorithms with acceptable performances have been presented, to the best of our knowledge, nearly all of them need to be fed with the correct number of clusters. In addition, these existing algorithms create only the hard and fuzzy partitions for multi-view objects,which are often located in highly-overlapping areas of multi-view feature space. The adoption of hard and fuzzy partition ignores the ambiguity and uncertainty in the assignment of objects, likely leading to performance degradation. To address these issues, we propose a novel sparse reconstructive multi-view evidential clustering algorithm(SRMVEC). Based on a sparse reconstructive procedure, SRMVEC learns a shared affinity matrix across views, and maps multi-view objects to a 2-dimensional humanreadable chart by calculating 2 newly defined mathematical metrics for each object. From this chart, users can detect the number of clusters and select several objects existing in the dataset as cluster centers. Then, SRMVEC derives a credal partition under the framework of evidence theory, improving the fault tolerance of clustering. Ablation studies show the benefits of adopting the sparse reconstructive procedure and evidence theory. Besides,SRMVEC delivers effectiveness on benchmark datasets by outperforming some state-of-the-art methods. 展开更多
关键词 Evidence theory multi-view clustering(MVC) optimization sparse reconstruction
下载PDF
Geophysical data sparse reconstruction based on L0-norm minimization 被引量:6
2
作者 陈国新 陈生昌 +1 位作者 王汉闯 张博 《Applied Geophysics》 SCIE CSCD 2013年第2期181-190,236,共11页
Missing data are a problem in geophysical surveys, and interpolation and reconstruction of missing data is part of the data processing and interpretation. Based on the sparseness of the geophysical data or the transfo... Missing data are a problem in geophysical surveys, and interpolation and reconstruction of missing data is part of the data processing and interpretation. Based on the sparseness of the geophysical data or the transform domain, we can improve the accuracy and stability of the reconstruction by transforming it to a sparse optimization problem. In this paper, we propose a mathematical model for the sparse reconstruction of data based on the LO-norm minimization. Furthermore, we discuss two types of the approximation algorithm for the LO- norm minimization according to the size and characteristics of the geophysical data: namely, the iteratively reweighted least-squares algorithm and the fast iterative hard thresholding algorithm. Theoretical and numerical analysis showed that applying the iteratively reweighted least-squares algorithm to the reconstruction of potential field data exploits its fast convergence rate, short calculation time, and high precision, whereas the fast iterative hard thresholding algorithm is more suitable for processing seismic data, moreover, its computational efficiency is better than that of the traditional iterative hard thresholding algorithm. 展开更多
关键词 Geophysical data sparse reconstruction LO-norm minimization iterativelyreweighted least squares fast iterative hard thresholding
下载PDF
A FAST CONVERGING SPARSE RECONSTRUCTION ALGORITHM IN GHOST IMAGING 被引量:2
3
作者 Li Enrong Chen Mingliang +2 位作者 Gong Wenlin Wang Hui Han Shensheng 《Journal of Electronics(China)》 2012年第6期617-620,共4页
A fast converging sparse reconstruction algorithm in ghost imaging is presented. It utilizes total variation regularization and its formulation is based on the Karush-Kuhn-Tucker (KKT) theorem in the theory of convex ... A fast converging sparse reconstruction algorithm in ghost imaging is presented. It utilizes total variation regularization and its formulation is based on the Karush-Kuhn-Tucker (KKT) theorem in the theory of convex optimization. Tests using experimental data show that, compared with the algorithm of Gradient Projection for Sparse Reconstruction (GPSR), the proposed algorithm yields better results with less computation work. 展开更多
关键词 Compressive sensing Ghost Imaging (GI) sparse reconstruction Karush-Kuhn-Tucker (KKT) condition Gradient projection
下载PDF
Compressed sensing sparse reconstruction for coherent field imaging
4
作者 曹蓓 罗秀娟 +2 位作者 张羽 刘辉 陈明徕 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第4期79-84,共6页
Return signal processing and reconstruction plays a pivotal role in coherent field imaging, having a significant in- fluence on the quality of the reconstructed image. To reduce the required samples and accelerate the... Return signal processing and reconstruction plays a pivotal role in coherent field imaging, having a significant in- fluence on the quality of the reconstructed image. To reduce the required samples and accelerate the sampling process, we propose a genuine sparse reconstruction scheme based on compressed sensing theory. By analyzing the sparsity of the received signal in the Fourier spectrum domain, we accomplish an effective random projection and then reconstruct the return signal from as little as 10% of traditional samples, finally acquiring the target image precisely. The results of the numerical simulations and practical experiments verify the correctness of the proposed method, providing an efficient processing approach for imaging fast-moving targets in the future. 展开更多
关键词 coherent field imaging computational imaging sparse reconstruction compressed sensing
下载PDF
DOA estimation method for wideband signals by block sparse reconstruction
5
作者 Jiaqi Zhen Zhifang Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第1期20-27,共8页
For the direction of arrival(DOA) estimation,traditional sparse reconstruction methods for wideband signals usually need many iteration times.For this problem,a new method for two-dimensional wideband signals based ... For the direction of arrival(DOA) estimation,traditional sparse reconstruction methods for wideband signals usually need many iteration times.For this problem,a new method for two-dimensional wideband signals based on block sparse reconstruction is proposed.First,a prolate spheroidal wave function(PSWF) is used to fit the wideband signals,then the block sparse reconstruction technology is employed for DOA estimation.The proposed method uses orthogonalization to choose the matching atoms,ensuring that the residual components correspond to the minimum absolute value.Meanwhile,the vectors obtained by iteration are back-disposed according to the corresponding atomic matching rules,so the extra atoms are abandoned in the course of iteration,and the residual components of current iteration are reduced.Thus the original sparse signals are reconstructed.The proposed method reduces iteration times comparing with the traditional reconstruction methods,and the estimation precision is better than the classical two-sided correlation transformation(TCT)algorithm when the snapshot is small or the signal-to-noise ratio(SNR) is low. 展开更多
关键词 direction of arrival(DOA)estimation wideband signal prolate spheroidal wave function(PSWF) block sparse reconstruction.
下载PDF
Target parameter estimation for OTFS-integrated radar and communications based on sparse reconstruction preprocessing
6
作者 Zhenkai ZHANG Xiaoke SHANG Yue XIAO 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2024年第5期742-754,共13页
Orthogonal time-frequency space(OTFS)is a new modulation technique proposed in recent years for high Doppler wireless scenes.To solve the parameter estimation problem of the OTFS-integrated radar and communications sy... Orthogonal time-frequency space(OTFS)is a new modulation technique proposed in recent years for high Doppler wireless scenes.To solve the parameter estimation problem of the OTFS-integrated radar and communications system,we propose a parameter estimation method based on sparse reconstruction preprocessing to reduce the computational effort of the traditional weighted subspace fitting(WSF)algorithm.First,an OTFS-integrated echo signal model is constructed.Then,the echo signal is transformed to the time domain to separate the target angle from the range,and the range and angle of the detected target are coarsely estimated by using the sparse reconstruction algorithm.Finally,the WSF algorithm is used to refine the search with the coarse estimate at the center to obtain an accurate estimate.The simulations demonstrate the effectiveness and superiority of the proposed parameterestimation algorithm. 展开更多
关键词 Integrated radar and communications system Orthogonal time-frequency space Target parameter estimation sparse reconstruction Weighted subspace fitting
原文传递
An adaptive image sparse reconstruction method combined with nonlocal similarity and cosparsity for mixed Gaussian-Poisson noise removal 被引量:1
7
作者 陈勇翡 高红霞 +1 位作者 吴梓灵 康慧 《Optoelectronics Letters》 EI 2018年第1期57-60,共4页
Compressed sensing(CS) has achieved great success in single noise removal. However, it cannot restore the images contaminated with mixed noise efficiently. This paper introduces nonlocal similarity and cosparsity insp... Compressed sensing(CS) has achieved great success in single noise removal. However, it cannot restore the images contaminated with mixed noise efficiently. This paper introduces nonlocal similarity and cosparsity inspired by compressed sensing to overcome the difficulties in mixed noise removal, in which nonlocal similarity explores the signal sparsity from similar patches, and cosparsity assumes that the signal is sparse after a possibly redundant transform. Meanwhile, an adaptive scheme is designed to keep the balance between mixed noise removal and detail preservation based on local variance. Finally, IRLSM and RACoSaMP are adopted to solve the objective function. Experimental results demonstrate that the proposed method is superior to conventional CS methods, like K-SVD and state-of-art method nonlocally centralized sparse representation(NCSR), in terms of both visual results and quantitative measures. 展开更多
关键词 SVD AK An adaptive image sparse reconstruction method combined with nonlocal similarity and cosparsity for mixed Gaussian-Poisson noise removal MSR
原文传递
Sparse Reconstruction and Damage Imaging Method Based on Uniform Sparse Sampling
8
作者 Pengfei Li Ying Luo +2 位作者 Kan Feng Yang Zhou Chenguang Xu 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2020年第6期744-755,共12页
The full wavefield detection method based on guided waves can efficiently detect and locate damages relying on the collection of large amounts of wavefield data.The acquisition process by scanning laser Doppler vibrom... The full wavefield detection method based on guided waves can efficiently detect and locate damages relying on the collection of large amounts of wavefield data.The acquisition process by scanning laser Doppler vibrometer(SLDV)is generally time-consuming,which is limited by Nyquist sampling theorem.To reduce the acquisition time,full wavefield data can be reconstructed from a small number of random sampling point signals combining with compressed sensing.However,the random sampling point signals need to be obtained by adding additional components to the SLDV system or offline processing.Because the random sparse sampling is difficult to achieve via the SLDV system,a new uniform sparse sampling strategy is proposed in this paper.By using the uniform sparse sampling coordinates instead of the random spatial sampling point coordinates,sparse sampling can be applied to SLDV without adding additional components or offline processing.The simulation and experimental results show that the proposed strategy can reduce the measurement locations required for accurate signal recovery to less than 90%of the Nyquist sampling grid,and the damage location error is within the minimum half wavelength.Compared with the conventional jittered sampling strategy,the proposed sampling strategy can directly reduce the sampling time of the SLDV system by more than 90%without adding additional components and achieve the same accuracy of guided wavefield reconstruction and damage location as the jittered sampling strategy.The research results can greatly improve the efficiency of damage detection technology based on wavefield analysis. 展开更多
关键词 Scanning laser Doppler vibrometer Lamb waves Compressed sensing Wavefield sparse reconstruction Damage imaging
原文传递
Iterative sparse reconstruction of spectral domain OCT signal
9
作者 Xuan Liu Jin U.Kang 《Chinese Optics Letters》 SCIE EI CAS CSCD 2014年第5期41-44,共4页
We propose and study an iterative sparse reconstruction for Fourier domain optical coherence tomography (FD OCT) image by solving a constrained optimization problem that minimizes L-1 norm. Our method takes the spec... We propose and study an iterative sparse reconstruction for Fourier domain optical coherence tomography (FD OCT) image by solving a constrained optimization problem that minimizes L-1 norm. Our method takes the spectral shape of the OCT light source into consideration in the iterative image reconstruction procedure that allows deconvolution of the axial point spread function from the blurred image during reconstruction rather than after reconstruction. By minimizing the L-1 norm, the axial resolution and the signal to noise ratio of image can both be enhanced. The effectiveness of our method is validated using numerical simulation and experiment. 展开更多
关键词 PSF Iterative sparse reconstruction of spectral domain OCT signal
原文传递
Algorithm for reconstructing compressed sensing color imaging using the quaternion total variation
10
作者 廖帆 严路 +2 位作者 伍家松 韩旭 舒华忠 《Journal of Southeast University(English Edition)》 EI CAS 2015年第1期51-54,共4页
A new method for reconstructing the compressed sensing color image by solving an optimization problem based on total variation in the quaternion field is proposed, which can effectively improve the reconstructing abil... A new method for reconstructing the compressed sensing color image by solving an optimization problem based on total variation in the quaternion field is proposed, which can effectively improve the reconstructing ability of the color image. First, the color image is converted from RGB (red, green, blue) space to CMYK (cyan, magenta, yellow, black) space, which is assigned to a quaternion matrix. Meanwhile, the quaternion matrix is converted into the information of the phase and amplitude by the Euler form of the quatemion. Secondly, the phase and amplitude of the quatemion matrix are used as the smoothness constraints for the compressed sensing (CS) problem to make the reconstructing results more accurate. Finally, an iterative method based on gradient is used to solve the CS problem. Experimental results show that by considering the information of the phase and amplitude, the proposed method can achieve better performance than the existing method that treats the three components of the color image as independent parts. 展开更多
关键词 total variation compressed sensing quatemion sparse reconstruction color image restoration
下载PDF
Synthetic aperture radar imaging based on attributed scatter model using sparse recovery techniques
11
作者 苏伍各 王宏强 阳召成 《Journal of Central South University》 SCIE EI CAS 2014年第1期223-231,共9页
The sparse recovery algorithms formulate synthetic aperture radar (SAR) imaging problem in terms of sparse representation (SR) of a small number of strong scatters' positions among a much large number of potentia... The sparse recovery algorithms formulate synthetic aperture radar (SAR) imaging problem in terms of sparse representation (SR) of a small number of strong scatters' positions among a much large number of potential scatters' positions, and provide an effective approach to improve the SAR image resolution. Based on the attributed scatter center model, several experiments were performed with different practical considerations to evaluate the performance of five representative SR techniques, namely, sparse Bayesian learning (SBL), fast Bayesian matching pursuit (FBMP), smoothed 10 norm method (SL0), sparse reconstruction by separable approximation (SpaRSA), fast iterative shrinkage-thresholding algorithm (FISTA), and the parameter settings in five SR algorithms were discussed. In different situations, the performances of these algorithms were also discussed. Through the comparison of MSE and failure rate in each algorithm simulation, FBMP and SpaRSA are found suitable for dealing with problems in the SAR imaging based on attributed scattering center model. Although the SBL is time-consuming, it always get better performance when related to failure rate and high SNR. 展开更多
关键词 attributed scatter center model sparse representation sparse Bayesian learning fast Bayesian matching pursuit smoothed l0 norm sparse reconstruction by separable approximation fast iterative shrinkage-thresholding algorithm
下载PDF
Maximal-minimal correlation atoms algorithm for sparse recovery
12
作者 Wei Gan Luping Xu Hua Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第4期579-585,共7页
A new iterative algorithm is proposed to reconstruct an unknown sparse signal from a set of projected measurements. Unlike existing greedy pursuit methods which only consider the atoms having the highest correlation w... A new iterative algorithm is proposed to reconstruct an unknown sparse signal from a set of projected measurements. Unlike existing greedy pursuit methods which only consider the atoms having the highest correlation with the residual signal, the proposed algorithm not only considers the higher correlation atoms but also reserves the lower correlation atoms with the residual signal. In the lower correlation atoms, only a few are correct which usually impact the reconstructive performance and decide the reconstruction dynamic range of greedy pursuit methods. The others are redundant. In order to avoid redundant atoms impacting the reconstructive accuracy, the Bayesian pursuit algorithm is used to eliminate them. Simulation results show that the proposed algorithm can improve the reconstructive dynamic range and the reconstructive accuracy. Furthermore, better noise immunity compared with the existing greedy pursuit methods can be obtained. 展开更多
关键词 compressive sensing (CS) correlation atom Bayesian hypothesis sparse reconstruction.
下载PDF
Radar Imaging of Sidelobe Suppression Based on Sparse Regularization
13
作者 Xiaoxiang Zhu Guanghu Jin +1 位作者 Feng He Zhen Dong 《Journal of Computer and Communications》 2016年第3期108-115,共8页
Synthetic aperture radar based on the matched filter theory has the ability of obtaining two-di- mensional image of the scattering areas. Nevertheless, the resolution and sidelobe level of SAR imaging is limited by th... Synthetic aperture radar based on the matched filter theory has the ability of obtaining two-di- mensional image of the scattering areas. Nevertheless, the resolution and sidelobe level of SAR imaging is limited by the antenna length and bandwidth of transmitted signal. However, for sparse signals (direct or indirect), sparse imaging methods can break through limitations of the conventional SAR methods. In this paper, we introduce the basic theory of sparse representation and reconstruction, and then analyze several common sparse imaging algorithms: the greed algorithm, the convex optimization algorithm. We apply some of these algorithms into SAR imaging using RadBasedata. The results show the presented method based on sparse construction theory outperforms the conventional SAR method based on MF theory. 展开更多
关键词 Matched Filtering sparse Representation sparse reconstruction Convex Optimization Greed Algorithm
下载PDF
一种基于迭代近端投影的被动声纳探测离网格DOA估计方法
14
作者 戴泽华 张亮 +1 位作者 韩笑 殷敬伟 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第2期417-424,共8页
Traditional direction of arrival(DOA)estimation methods based on sparse reconstruction commonly use convex or smooth functions to approximate non-convex and non-smooth sparse representation problems.This approach ofte... Traditional direction of arrival(DOA)estimation methods based on sparse reconstruction commonly use convex or smooth functions to approximate non-convex and non-smooth sparse representation problems.This approach often introduces errors into the sparse representation model,necessitating the development of improved DOA estimation algorithms.Moreover,conventional DOA estimation methods typically assume that the signal coincides with a predetermined grid.However,in reality,this assumption often does not hold true.The likelihood of a signal not aligning precisely with the predefined grid is high,resulting in potential grid mismatch issues for the algorithm.To address the challenges associated with grid mismatch and errors in sparse representation models,this article proposes a novel high-performance off-grid DOA estimation approach based on iterative proximal projection(IPP).In the proposed method,we employ an alternating optimization strategy to jointly estimate sparse signals and grid offset parameters.A proximal function optimization model is utilized to address non-convex and non-smooth sparse representation problems in DOA estimation.Subsequently,we leverage the smoothly clipped absolute deviation penalty(SCAD)function to compute the proximal operator for solving the model.Simulation and sea trial experiments have validated the superiority of the proposed method in terms of higher resolution and more accurate DOA estimation performance when compared to both traditional sparse reconstruction methods and advanced off-grid techniques. 展开更多
关键词 DOA estimation sparse reconstruction Off-grid model Iterative proximal projection Passive sonar detection
下载PDF
Method for denoising and reconstructing radar HRRP using modified sparse auto-encoder 被引量:2
15
作者 Chen GUO Haipeng WANG +2 位作者 Tao JIAN Congan XU Shun SUN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第3期1026-1036,共11页
A high resolution range profile(HRRP) is a summation vector of the sub-echoes of the target scattering points acquired by a wide-band radar.Generally, HRRPs obtained in a noncooperative complex electromagnetic environ... A high resolution range profile(HRRP) is a summation vector of the sub-echoes of the target scattering points acquired by a wide-band radar.Generally, HRRPs obtained in a noncooperative complex electromagnetic environment are contaminated by strong noise.Effective pre-processing of the HRRP data can greatly improve the accuracy of target recognition.In this paper, a denoising and reconstruction method for HRRP is proposed based on a Modified Sparse Auto-Encoder, which is a representative non-linear model.To better reconstruct the HRRP, a sparse constraint is added to the proposed model and the sparse coefficient is calculated based on the intrinsic dimension of HRRP.The denoising of the HRRP is performed by adding random noise to the input HRRP data during the training process and fine-tuning the weight matrix through singular-value decomposition.The results of simulations showed that the proposed method can both reconstruct the signal with fidelity and suppress noise effectively, significantly outperforming other methods, especially in low Signal-to-Noise Ratio conditions. 展开更多
关键词 High resolution range profile Intrinsic dimension Modified sparse autoencoder Signal denoise Signal sparse reconstruction
原文传递
Source Recovery in Underdetermined Blind Source Separation Based on Artificial Neural Network 被引量:3
16
作者 Weihong Fu Bin Nong +2 位作者 Xinbiao Zhou Jun Liu Changle Li 《China Communications》 SCIE CSCD 2018年第1期140-154,共15页
We propose a novel source recovery algorithm for underdetermined blind source separation, which can result in better accuracy and lower computational cost. On the basis of the model of underdetermined blind source sep... We propose a novel source recovery algorithm for underdetermined blind source separation, which can result in better accuracy and lower computational cost. On the basis of the model of underdetermined blind source separation, the artificial neural network with single-layer perceptron is introduced into the proposed algorithm. Source signals are regarded as the weight vector of single-layer perceptron, and approximate ι~0-norm is taken into account for output error decision rule of the perceptron, which leads to the sparse recovery. Then the procedure of source recovery is adjusting the weight vector of the perceptron. What's more, the optimal learning factor is calculated and a descent sequence of smoothed parameter is used during iteration, which improves the performance and significantly decreases computational complexity of the proposed algorithm. The simulation results reveal that the algorithm proposed can recover the source signal with high precision, while it requires lower computational cost. 展开更多
关键词 underdetermined blind source separation ι~0-norm artificial neural network sparse reconstruction
下载PDF
Imaging algorithm of multi-ship motion target based on compressed sensing 被引量:2
17
作者 Lin Zhang Yicheng Jiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第4期790-796,共7页
An imaging algorithm based on compressed sensing(CS) for the multi-ship motion target is presented. In order to reduce the quantity of data transmission in searching the ships on a large sea area, both range and azi... An imaging algorithm based on compressed sensing(CS) for the multi-ship motion target is presented. In order to reduce the quantity of data transmission in searching the ships on a large sea area, both range and azimuth of the moving ship targets are converted into sparse representation under certain signal basis. The signal reconstruction algorithm based on CS at a distant calculation station, and the Keystone and fractional Fourier transform(FRFT) algorithm are used to compensate range migration and obtain Doppler frequency. When the sea ships satisfy the sparsity, the algorithm can obtain higher resolution in both range and azimuth than the conventional imaging algorithm. Some simulations are performed to verify the reliability and stability. 展开更多
关键词 synthetic aperture radar(SAR) compressed sensing(CS) multiple ships moving target sparse reconstruction
下载PDF
Primary Research of EIT Inverse Problem Based on CS (Compressed Sensing) Technique 被引量:1
18
作者 CHANG Tiantian DAI Meng XU Canhua FU Feng YOU Fusheng DONG Xiuzhen 《Journal of Mathematics and System Science》 2013年第1期41-46,共6页
EIT (electrical impedance tomography) problem should be represented by a group of partial differential equation, in numerical calculation: the nonlinear problem should be linearization approximately, and then linea... EIT (electrical impedance tomography) problem should be represented by a group of partial differential equation, in numerical calculation: the nonlinear problem should be linearization approximately, and then linear equations set is obtained, so EIT image reconstruct problem should be considered as a classical ill-posed, ill-conditioned, linear inverse problem. Its biggest problem is the number of unknown is much more than the number of the equations, this result in the low imaging quality. Especially, it can not imaging in center area. For this problem, we induce the CS technique into EIT image reconstruction algorithm. The main contributions in this paper are: firstly, built up the relationship between CS and EIT definitely; secondly, sparse reconstruction is a critical step in CS, built up a general sparse regularization model based on EIT; finally, gives out some EIT imaging models based on sparse regularization method. For different scenarios, compared with traditional Tikhonov regularization (smooth regularization) method, sparse reconstruction method is not only better at anti-noise, and imaging in center area, but also faster and better resolution. 展开更多
关键词 Electrical impedance tomography compressed sensing inverse problem REGULARIZATION sparse reconstruction.
下载PDF
An improved sparsity estimation variable step-size matching pursuit algorithm 被引量:4
19
作者 张若愚 赵洪林 《Journal of Southeast University(English Edition)》 EI CAS 2016年第2期164-169,共6页
To improve the reconstruction performance of the greedy algorithm for sparse signals, an improved greedy algorithm, called sparsity estimation variable step-size matching pursuit, is proposed. Compared with state-of-t... To improve the reconstruction performance of the greedy algorithm for sparse signals, an improved greedy algorithm, called sparsity estimation variable step-size matching pursuit, is proposed. Compared with state-of-the-art greedy algorithms, the proposed algorithm incorporates the restricted isometry property and variable step-size, which is utilized for sparsity estimation and reduces the reconstruction time, respectively. Based on the sparsity estimation, the initial value including sparsity level and support set is computed at the beginning of the reconstruction, which provides preliminary sparsity information for signal reconstruction. Then, the residual and correlation are calculated according to the initial value and the support set is refined at the next iteration associated with variable step-size and backtracking. Finally, the correct support set is obtained when the halting condition is reached and the original signal is reconstructed accurately. The simulation results demonstrate that the proposed algorithm improves the recovery performance and considerably outperforms the existing algorithm in terms of the running time in sparse signal reconstruction. 展开更多
关键词 compressed sensing sparse signal reconstruction matching pursuit sparsity estimation
下载PDF
Study on the key technology of spectral reflectivity reconstruction based on sparse prior by a single-pixel detector 被引量:1
20
作者 Leihong Zhang Dong Liang +4 位作者 Bei Li Yi Kang Zilan Pan Dawei Zhang Xiuhua Ma 《Photonics Research》 SCIE EI 2016年第3期115-121,共7页
By studying the traditional spectral reflectance reconstruction method, spectral reflectance and the relative spectral power distribution of a lighting source are sparsely decomposed, and the orthogonal property of th... By studying the traditional spectral reflectance reconstruction method, spectral reflectance and the relative spectral power distribution of a lighting source are sparsely decomposed, and the orthogonal property of the principal component orthogonal basis is used to eliminate basis; then spectral reflectance data are obtained by solving a sparse coefficient. After theoretical analysis, the spectral reflectance reconstruction based on sparse prior knowledge of the principal component orthogonal basis by a single-pixel detector is carried out by software simulation and experiment. It can reduce the complexity and cost of the system, and has certain significance for the improvement of multispectral image acquisition technology. 展开更多
关键词 Study on the key technology of spectral reflectivity reconstruction based on sparse prior by a single-pixel detector
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部