期刊文献+
共找到84篇文章
< 1 2 5 >
每页显示 20 50 100
Multi-task Joint Sparse Representation Classification Based on Fisher Discrimination Dictionary Learning 被引量:6
1
作者 Rui Wang Miaomiao Shen +1 位作者 Yanping Li Samuel Gomes 《Computers, Materials & Continua》 SCIE EI 2018年第10期25-48,共24页
Recently,sparse representation classification(SRC)and fisher discrimination dictionary learning(FDDL)methods have emerged as important methods for vehicle classification.In this paper,inspired by recent breakthroughs ... Recently,sparse representation classification(SRC)and fisher discrimination dictionary learning(FDDL)methods have emerged as important methods for vehicle classification.In this paper,inspired by recent breakthroughs of discrimination dictionary learning approach and multi-task joint covariate selection,we focus on the problem of vehicle classification in real-world applications by formulating it as a multi-task joint sparse representation model based on fisher discrimination dictionary learning to merge the strength of multiple features among multiple sensors.To improve the classification accuracy in complex scenes,we develop a new method,called multi-task joint sparse representation classification based on fisher discrimination dictionary learning,for vehicle classification.In our proposed method,the acoustic and seismic sensor data sets are captured to measure the same physical event simultaneously by multiple heterogeneous sensors and the multi-dimensional frequency spectrum features of sensors data are extracted using Mel frequency cepstral coefficients(MFCC).Moreover,we extend our model to handle sparse environmental noise.We experimentally demonstrate the benefits of joint information fusion based on fisher discrimination dictionary learning from different sensors in vehicle classification tasks. 展开更多
关键词 Multi-sensor fusion fisher discrimination dictionary learning(FDDL) vehicle classification sensor networks sparse representation classification(src)
下载PDF
A new discriminative sparse parameter classifier with iterative removal for face recognition
2
作者 TANG De-yan ZHOU Si-wang +2 位作者 LUO Meng-ru CHEN Hao-wen TANG Hui 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第4期1226-1238,共13页
Face recognition has been widely used and developed rapidly in recent years.The methods based on sparse representation have made great breakthroughs,and collaborative representation-based classification(CRC)is the typ... Face recognition has been widely used and developed rapidly in recent years.The methods based on sparse representation have made great breakthroughs,and collaborative representation-based classification(CRC)is the typical representative.However,CRC cannot distinguish similar samples well,leading to a wrong classification easily.As an improved method based on CRC,the two-phase test sample sparse representation(TPTSSR)removes the samples that make little contribution to the representation of the testing sample.Nevertheless,only one removal is not sufficient,since some useless samples may still be retained,along with some useful samples maybe being removed randomly.In this work,a novel classifier,called discriminative sparse parameter(DSP)classifier with iterative removal,is proposed for face recognition.The proposed DSP classifier utilizes sparse parameter to measure the representation ability of training samples straight-forward.Moreover,to avoid some useful samples being removed randomly with only one removal,DSP classifier removes most uncorrelated samples gradually with iterations.Extensive experiments on different typical poses,expressions and noisy face datasets are conducted to assess the performance of the proposed DSP classifier.The experimental results demonstrate that DSP classifier achieves a better recognition rate than the well-known SRC,CRC,RRC,RCR,SRMVS,RFSR and TPTSSR classifiers for face recognition in various situations. 展开更多
关键词 collaborative representation-based classification discriminative sparse parameter classifier face recognition iterative removal sparse representation two-phase test sample sparse representation
下载PDF
基于EEMD样本熵和SRC的自确认气体传感器故障诊断方法 被引量:8
3
作者 陈寅生 姜守达 +2 位作者 刘晓东 杨京礼 王祁 《系统工程与电子技术》 EI CSCD 北大核心 2016年第5期1215-1220,共6页
针对非线性、非平稳情况下自确认气体传感器的故障诊断问题,提出了对传感器不同故障模式信号进行特征提取和智能识别的在线故障诊断方法。首先,该方法根据传感器信号的变化进行集合经验模态分解(ensemble empirical mode decomposition,... 针对非线性、非平稳情况下自确认气体传感器的故障诊断问题,提出了对传感器不同故障模式信号进行特征提取和智能识别的在线故障诊断方法。首先,该方法根据传感器信号的变化进行集合经验模态分解(ensemble empirical mode decomposition,EEMD),自适应地获得一组固有模态函数(intrinsic mode functions,IMFs),对每个IMF及残余分量进行样本熵分析,提取传感器输出信号的完备特征;然后,利用稀疏表示分类(sparse representationbased classification,SRC)将各故障模式下训练样本的特征向量构成超完备字典。为了提高故障诊断方法的自适应能力,对SRC分类器进行在线更新。通过求解最小1范数约束问题,获得测试样本的稀疏表示系数,再由不同故障类型的重构误差确定测试样本归属,进行传感器故障类型识别。实验结果表明,与目前其他传感器故障诊断方法比较,本文提出的方法能够更显著地提取传感器故障信号特征,故障识别率提高4%以上,达到97.14%。 展开更多
关键词 自确认气体传感器 故障诊断 集合经验模态分解 样本熵 稀疏表示分类
下载PDF
基于PCA和SRC算法的人脸识别储物柜系统的设计与实现 被引量:3
4
作者 张涛 吴键 《自动化与仪表》 2017年第4期9-14,共6页
该文设计研究了人脸识别储物柜系统,针对影响识别率的因素,采用了压缩感知即结合主成分特征提取的稀疏表示分类算法(SRC)。阐述了主成分分析法(PCA)提取特征向量的工作原理和稀疏表示分类算法的实现,以及人脸识别储物柜的硬件实现和软... 该文设计研究了人脸识别储物柜系统,针对影响识别率的因素,采用了压缩感知即结合主成分特征提取的稀疏表示分类算法(SRC)。阐述了主成分分析法(PCA)提取特征向量的工作原理和稀疏表示分类算法的实现,以及人脸识别储物柜的硬件实现和软件流程。试验结果表明,与传统的识别算法比对,结合压缩感知理论的人脸识别方法,识别率高,对噪声、有部分遮挡物情况的识别效果较好。 展开更多
关键词 压缩感知 人脸识别 储物柜系统 主成分分析法 稀疏表示分类算法
下载PDF
Volterra核优化的SRC人脸识别算法 被引量:1
5
作者 焦阳 赵嵩 《信阳师范学院学报(自然科学版)》 CAS 北大核心 2022年第1期141-144,共4页
为了提高稀疏表示分类算法对属于同一方向不同类别样本的分类准确率,提出了一种基于Volterra核优化的稀疏表示分类算法。该算法首先将原始的人脸图像分成不重叠的小块,并利用Volterra核映射到高维空间。在训练阶段遵循费舍尔标准,根据... 为了提高稀疏表示分类算法对属于同一方向不同类别样本的分类准确率,提出了一种基于Volterra核优化的稀疏表示分类算法。该算法首先将原始的人脸图像分成不重叠的小块,并利用Volterra核映射到高维空间。在训练阶段遵循费舍尔标准,根据最大化类间距离和最小化类内距离来定义目标函数,从而获得优化Volterra核。与其他方法在ORL和YaleB标准数据集上进行对比实验,结果表明,采用Volterra核优化的SRC人脸识别分类方法在对样本的分类精度上提高了3%。 展开更多
关键词 人脸识别 VOLTERRA核 稀疏表示分类 分类方法
下载PDF
基于蜂群单阈值分割的SRC板材缺陷分类方法 被引量:1
6
作者 魏晓慧 马晓珍 刘亚秋 《沈阳工业大学学报》 EI CAS 北大核心 2017年第3期292-298,共7页
针对传统单阈值板材缺陷分割算法易陷入局部最优、早熟以及收敛速度慢等缺点,提出了一种基于改进蜂群算法的单阈值分割算法.为了提高缺陷分类准确率并减少运算量,将稀疏表达分类器(SRC)运用到板材缺陷分类过程中.改进算法每次迭代都会... 针对传统单阈值板材缺陷分割算法易陷入局部最优、早熟以及收敛速度慢等缺点,提出了一种基于改进蜂群算法的单阈值分割算法.为了提高缺陷分类准确率并减少运算量,将稀疏表达分类器(SRC)运用到板材缺陷分类过程中.改进算法每次迭代都会同时进行全局和局部搜索,且侦查蜂随机全局选取蜜源以加快收敛速度,搜索半径可以根据时变搜索参数进行自适应调整,SRC可将缺陷分类问题转换为求最稀疏系数解的过程.结果表明,本文算法可以准确快速地计算出最佳分割阈值,并将分类准确率提高到90%以上,具有一定的可靠性与可行性. 展开更多
关键词 板材缺陷 蜂群算法 单阈值分割 蜜源 稀疏表达分类器 搜索半径 时变搜索参数 最稀疏系数
下载PDF
用于人脸识别的改进MKD-SRC方法
7
作者 何珺 孙波 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第1期12-18,共7页
稀疏表示是近年来图像处理、模式识别及计算机视觉领域中的一个研究热点,广泛应用在图像压缩、图像去噪及修复、目标检测、物体识别等各个方向.在人脸识别的应用背景下,一种基于局部特征的多任务稀疏表示分类方法,即基于多任务多关键点... 稀疏表示是近年来图像处理、模式识别及计算机视觉领域中的一个研究热点,广泛应用在图像压缩、图像去噪及修复、目标检测、物体识别等各个方向.在人脸识别的应用背景下,一种基于局部特征的多任务稀疏表示分类方法,即基于多任务多关键点特征描述子(multi-keypoint descriptors,MKD)的稀疏识别(MKD-SRC)方法虽具有良好的旋转、尺度不变性,但计算复杂度较高,且对光照的鲁棒性并不理想.本文就此问题分析了MKD-SRC方法的原理和前提,提出基于线性子空间和极大似然概率的改进方法,并在公开人脸数据库上对方法的性能进行了测试.实验结果表明,改进的MKD-SRC方法在计算效率以及对大块噪声污染和光照不均匀的鲁棒性这两个方面取得了良好的效果. 展开更多
关键词 人脸识别 稀疏表示分类方法 改进MKD-src 线性子空间 极大似然概率
下载PDF
SRC人脸识别算法分析及改进
8
作者 张仁霖 《唐山师范学院学报》 2020年第6期74-77,共4页
针对SRC算法识别率不高的问题,提出了SRCE和SRCP算法,借助AR人脸数据库进行了验证。结果表明SRCE和SRCP算法在人脸有遮挡情况下,具有更好的识别性能和可靠性。
关键词 人脸识别 稀疏表征 src算法 识别率
下载PDF
SRC-ODP:面向稀疏表示分类器的正交鉴别投影 被引量:1
9
作者 赵家成 张国庆 孙怀江 《计算机应用研究》 CSCD 北大核心 2016年第10期3165-3168,共4页
稀疏表示分类方法(sparse representation-based classifier,SRC)在模式识别领域展现了巨大的潜力。基于稀疏表示分类的鉴别投影(SRC steered discriminative projection,SRC-DP)则是建立在SRC分类准则基础上的降维方法,其在投影空间中... 稀疏表示分类方法(sparse representation-based classifier,SRC)在模式识别领域展现了巨大的潜力。基于稀疏表示分类的鉴别投影(SRC steered discriminative projection,SRC-DP)则是建立在SRC分类准则基础上的降维方法,其在投影空间中最大化类间重构误差与类内重构误差的比值。针对SRC-DP中提取的特征之间具有冗余信息,从而影响其鉴别能力的问题,提出SRC-ODP(SRC oriented orthogonal discriminative projection)方法,利用投影矩阵的正交约束取代SRC-DP中的约束条件,其优越性为:a)正交投影矩阵具有更高的特征提取效率;b)所提取的特征具有更强的鉴别能力。在AR和Extended Yale B数据库上的实验表明,该方法可以使SRC达到更好的分类结果。 展开更多
关键词 稀疏表示分类 正交鉴别投影 特征提取
下载PDF
SRC最佳鉴别投影及其在人脸识别中的应用 被引量:1
10
作者 甘炎灵 金聪 《计算机工程与科学》 CSCD 北大核心 2016年第11期2282-2288,共7页
根据稀疏表示分类器的分类准则,提出了一种稀疏表示分类器最佳判别的投影方法。该方法优化两个目标,一是数据集的类间和类内稀疏重构误差,二是数据集中区分度。优化结果使样本投影到低维空间中,确保SRC具有更好的分类性能。在AR和Yale... 根据稀疏表示分类器的分类准则,提出了一种稀疏表示分类器最佳判别的投影方法。该方法优化两个目标,一是数据集的类间和类内稀疏重构误差,二是数据集中区分度。优化结果使样本投影到低维空间中,确保SRC具有更好的分类性能。在AR和Yale数据库上进行人脸识别实验,并与几种流行的方法进行了比较,结果表明所提出的方法具有良好的有效性和鲁棒性。 展开更多
关键词 稀疏表示分类器 判别投影 人脸识别 分类性能
下载PDF
RRA-InceptionV3结合鲁棒稀疏表示的表情识别方法
11
作者 谢虹 姜文刚 《计算机工程》 CAS CSCD 北大核心 2023年第7期196-203,共8页
针对现实场景中人脸局部遮挡导致的表情识别准确度较低的问题,提出一种RRA-InceptionV3结合鲁棒稀疏表示的表情识别方法。将人脸图像通过多支路卷积运算和空洞卷积模块来获取丰富的表情特征,基于Asm-CBAM卷积注意力机制划分人脸表情特... 针对现实场景中人脸局部遮挡导致的表情识别准确度较低的问题,提出一种RRA-InceptionV3结合鲁棒稀疏表示的表情识别方法。将人脸图像通过多支路卷积运算和空洞卷积模块来获取丰富的表情特征,基于Asm-CBAM卷积注意力机制划分人脸表情特征的权重并进行多特征融合,随后堆叠密集残差模块,从多通道中自适应提取人脸特征信息,通过Asm-CBAM卷积注意力机制提高网络对人脸关键特征的注意力。在此基础上,利用鲁棒稀疏表示分类器方法对表情进行分类。在人脸数据集FER2013和CK+上的实验结果表明,该方法的人脸表情平均识别精度分别达到79.86%和98.74%,与OAD Net算法相比,分别高出7.50和3.14个百分点,能够高效提取人脸表情特征。此外,在人脸被遮挡的情况下具有较强的鲁棒性,有效提高了在人脸遮挡情况下表情识别的准确度。 展开更多
关键词 表情识别 局部遮挡 鲁棒稀疏表示分类器方法 密集残差 Asm-CBAM模块 空洞卷积
下载PDF
基于多视图和注意力推荐网络的三维物体识别方法
12
作者 张满囤 权子洋 +4 位作者 师子奇 刘川 申冲 吴清 田琪 《郑州大学学报(理学版)》 CAS 北大核心 2023年第1期57-63,共7页
传统物体识别方法是从单一图像中通过人工提取图像特征,存在成本高、质量低等问题。针对上述问题,提出一种基于多视图和注意力推荐网络的三维物体识别方法,多视图很好地保留了物体在局部和全局上的特征;注意力模块可以有效地对视图上关... 传统物体识别方法是从单一图像中通过人工提取图像特征,存在成本高、质量低等问题。针对上述问题,提出一种基于多视图和注意力推荐网络的三维物体识别方法,多视图很好地保留了物体在局部和全局上的特征;注意力模块可以有效地对视图上关键的特征聚焦,忽略无关或干扰特征。该方法利用一组多视图作为输入数据,通过卷积神经网络端到端提取物体特征,在卷积层加入注意力模块,实现视图关键区域的定位和剪裁,将处理后的视图送入另外一个卷积层,两个相同卷积操作提取的特征在池化层聚合,利用稀疏表示分类器对特征描述子进行分类识别。通过两个公开数据集的实验表明,所提算法对物体图像的识别准确度优于传统算法。 展开更多
关键词 三维物体识别 多视图 注意力模块 卷积神经网络 稀疏表示分类器
下载PDF
融合小波包细节子图及稀疏表示的人脸识别 被引量:6
13
作者 龚飞 金炜 +2 位作者 符冉迪 刘箴 李纲 《光电工程》 CAS CSCD 北大核心 2016年第6期32-38,50,共8页
针对现有人脸识别方法在光照变化、表情变化及噪声干扰等情况下识别率下降的问题,本文将主成分分析(PCA),图像的小波包分解(WPD)和稀疏表示分类(SRC)等算法结合起来进行研究分析,提出了一种融合小波包细节子图及稀疏表示(FW-SRC)的人脸... 针对现有人脸识别方法在光照变化、表情变化及噪声干扰等情况下识别率下降的问题,本文将主成分分析(PCA),图像的小波包分解(WPD)和稀疏表示分类(SRC)等算法结合起来进行研究分析,提出了一种融合小波包细节子图及稀疏表示(FW-SRC)的人脸识别方法。该方法首先将图像小波包分解以后的子图像进行加权融合,对融合后的图像进行特征提取并构造特征空间,然后用样本在特征空间上的投影集构造稀疏字典,最后通过对人脸图像的稀疏表示实现分类识别。采用Yale B、AR和CMU PIE人脸库分别进行了光照、表情及噪声鲁棒性的测试,实验结果表明本文方法不仅提高了人脸识别率,而且在光照强度变化、表情变化以及噪声干扰的情况下具有良好的识别性能。 展开更多
关键词 人脸识别 小波包分解 稀疏表示 FW-src 鲁棒性
下载PDF
基于Gabor多通道加权优化与稀疏表征的人脸识别方法 被引量:18
14
作者 杨清山 郭成安 金明录 《电子与信息学报》 EI CSCD 北大核心 2011年第7期1618-1624,共7页
稀疏表征理论在模式识别中的应用引起广泛的关注。在用稀疏表征方法研究人脸识别问题中,为了使得表征系数矢量具有更为显著的稀疏性,该文提出一种Gabor稀疏表征分类(Gabor Sparse Representation Classification,GSRC)算法,该算法利用Ga... 稀疏表征理论在模式识别中的应用引起广泛的关注。在用稀疏表征方法研究人脸识别问题中,为了使得表征系数矢量具有更为显著的稀疏性,该文提出一种Gabor稀疏表征分类(Gabor Sparse Representation Classification,GSRC)算法,该算法利用Gabor局部特征构造字典,增强算法对外界环境变化的鲁棒性。GSRC算法对所有的Gabor特征等同对待,通过进一步考虑不同Gabor特征对识别的不同贡献,该文提出了一种加权多通道Gabor稀疏表征分类(WMC-GSRC)算法,该算法通过引入Gabor多通道模型,提取不同通道的Gabor特征分别构造字典和稀疏表征分类器,在决策级执行分类器的加权融合得到识别结果。通过在ORL,AR和FERET人脸库上的实验结果验证了该文算法的有效性。 展开更多
关键词 人脸识别 稀疏表征 Gabor局部特征 字典 分类器融合
下载PDF
改进的局部稀疏表示分类算法及其在人脸识别中的应用 被引量:6
15
作者 尹贺峰 吴小俊 陈素根 《计算机科学》 CSCD 北大核心 2015年第8期48-51,85,共5页
近年来,稀疏表示分类(Sparse Representation Based Classification,SRC)方法在人脸识别中受到越来越多的关注。原始SRC方法使用所有的训练样本组成字典矩阵,当训练样本比较多时,稀疏系数的求解会变得非常耗时。为了解决这一问题,提出... 近年来,稀疏表示分类(Sparse Representation Based Classification,SRC)方法在人脸识别中受到越来越多的关注。原始SRC方法使用所有的训练样本组成字典矩阵,当训练样本比较多时,稀疏系数的求解会变得非常耗时。为了解决这一问题,提出一种新的局部稀疏表示分类(Local SRC,LSRC)方法。该方法针对每个测试样本,根据测试样本和训练样本稀疏系数之间的相似性来选择部分训练样本,由这些训练样本组成字典,然后在这个字典上对测试样本进行稀疏分解。该方法性能相比于原始LSRC方法更稳定。在ORL、Yale和AR人脸库上的实验结果表明,该方法的效果优于SRC和LSRC。 展开更多
关键词 稀疏表示分类 局部稀疏表示分类 稀疏系数 相似性 人脸识别
下载PDF
随机降维映射稀疏表示的电能质量扰动多分类研究 被引量:18
16
作者 沈跃 刘国海 刘慧 《仪器仪表学报》 EI CAS CSCD 北大核心 2011年第6期1371-1376,共6页
提出一种随机降维映射特征提取与稀疏表示分类相结合的电能质量扰动信号识别方法。首先将扰动信号测试样本表示为训练样本集的过完备字典稀疏线性组合,然后使用随机测量矩阵获取测试样本降维特征量和稀疏表示感知矩阵,应用最小L1范数解... 提出一种随机降维映射特征提取与稀疏表示分类相结合的电能质量扰动信号识别方法。首先将扰动信号测试样本表示为训练样本集的过完备字典稀疏线性组合,然后使用随机测量矩阵获取测试样本降维特征量和稀疏表示感知矩阵,应用最小L1范数解决方案求取扰动信号测试样本的稀疏解,由冗余误差最小值确定目标归属类,实现对电能质量扰动的稀疏表示多分类识别。研究表明随机矩阵降维映射特征提取不依赖于电能扰动样本特性,构造简单,运算快速,具有普适性;稀疏表示分类法与支持向量机相比无需组合多个二分类器来实现多分类器。仿真和实验结果表明该方法能有效提取各种电能扰动特征,抗噪声鲁棒性好,在信噪比20 dB以上的噪声环境中电能质量扰动分类准确率达95%以上。 展开更多
关键词 电能质量 扰动分类 压缩感知 随机矩阵 降维映射 稀疏表示分类 最小L1范数
下载PDF
基于稀疏表示的低分辨率人脸疲劳表情识别 被引量:3
17
作者 张灵 田小路 +2 位作者 罗源 常捷 吴勇 《计算机科学》 CSCD 北大核心 2016年第9期305-309,共5页
为了有效提高低分辨率图像的人脸疲劳表情识别性能,提出一种基于稀疏表示的低分辨率人脸疲劳表情的识别方法。首先,采用肯德尔和谐系数可信度分析法构建了低分辨率人脸疲劳表情图像库TIREDFACE。其次,通过图像库中的低分辨率样本疲劳表... 为了有效提高低分辨率图像的人脸疲劳表情识别性能,提出一种基于稀疏表示的低分辨率人脸疲劳表情的识别方法。首先,采用肯德尔和谐系数可信度分析法构建了低分辨率人脸疲劳表情图像库TIREDFACE。其次,通过图像库中的低分辨率样本疲劳表情图像进行稀疏表示,再利用压缩感知理论寻求低分辨率测试样本的最稀疏解,采用求得的最稀疏解实现低分辨率人脸疲劳表情的分类。在低分辨率人脸视觉特征的疲劳表情图像库TIREDFACE的实验测试结果表明,将该方法用于低分辨人脸疲劳表情识别,性能优于线性法、最近邻法、支持向量机以及最近邻子空间法。可见,该方法用于低分辨率人脸疲劳表情识别时识别效果较好,精确度较高。 展开更多
关键词 稀疏表示 压缩感知 疲劳表情 基于稀疏表示分类 肯德尔和谐系数
下载PDF
基于自适应协同稀疏表示的多工况故障诊断方法 被引量:5
18
作者 刘小峰 刘万 +1 位作者 孙兵 柏林 《中国电机工程学报》 EI CSCD 北大核心 2021年第18期6371-6380,共10页
针对设备故障诊断中多工况与环境扰动对故障特征表征能力的影响问题,以及故障特征的个体差异性对稀疏分类精度的影响问题,提出基于自适应协同稀疏表示的多工况故障诊断方法。该方法通过各个故障特征在K-SVD稀疏表示中的重构残差构建特... 针对设备故障诊断中多工况与环境扰动对故障特征表征能力的影响问题,以及故障特征的个体差异性对稀疏分类精度的影响问题,提出基于自适应协同稀疏表示的多工况故障诊断方法。该方法通过各个故障特征在K-SVD稀疏表示中的重构残差构建特征稀疏分类性能的评分矩阵,以评分矩阵迭代优化后得到的权值矩阵对输入特征进行协同稀疏表示,更新字典原子与稀疏系数,使得同类故障模式下的稀疏重构误差最小化,不同类故障模式下的稀疏重构误差最大化,以增强每个样本特征的协同稀疏分类性能。该方法避免了多工况故障诊断中敏感特征筛选及特征高维映射的繁琐步骤,无需大量历史故障数据支撑,通过故障特征的自适应协同稀疏表征与稀疏分类器的加权迭代优化,建立最能表征设备故障状态的稀疏字典,有效提升了稀疏分类器对多工况设备故障的鉴别能力。滚动轴承与齿轮箱故障诊断实验结果表明,提出方法比现有的稀疏分类算法与传统的神经网络分类算法,具有更高的故障辨识精度与工况环境鲁棒性。 展开更多
关键词 协同稀疏表示 自适应加权 重构残差 稀疏表示分类器 设备故障诊断
下载PDF
改进Adaboost算法的人体步态识别方法 被引量:11
19
作者 罗莎 夏国恩 朱新琰 《控制工程》 CSCD 北大核心 2018年第7期1312-1317,共6页
为了在人体步态识别中更加准确地进行动作分类,提出了一种基于改进Ada Boost算法的人体步态识别方法。首先利用Kinect传感器捕获姿态序列,并表示为8个选定四肢的角向量(欧拉角),进一步通过稀疏表示建模作为候选特征;然后使用支持向量... 为了在人体步态识别中更加准确地进行动作分类,提出了一种基于改进Ada Boost算法的人体步态识别方法。首先利用Kinect传感器捕获姿态序列,并表示为8个选定四肢的角向量(欧拉角),进一步通过稀疏表示建模作为候选特征;然后使用支持向量机(SVM)对每一个动作特征进行训练,得到弱分类器;最后利用Adaboost算法进行训练,得到相应的动作特征集和强分类器,并对强分类器进行融合实现动作识别。通过大型数据集的测试以及与几种最新方法的比较,证明了该方案的有效性,识别精度能够达到94%左右。 展开更多
关键词 图像分割 模糊均值聚类算法 果蝇算法 味道浓度
下载PDF
基于总体局域均值分解及稀疏表示分类的天然气管道泄漏孔径识别 被引量:5
20
作者 孙洁娣 彭志涛 +1 位作者 温江涛 王飞 《中国机械工程》 EI CAS CSCD 北大核心 2017年第10期1202-1209,共8页
针对天然气管道泄漏受孔径、传感器距离、管道内压力等多种因素影响,特征提取及识别算法较为复杂的问题,提出了基于总体局域均值分解-相对熵的特征提取算法并结合稀疏表示分类的泄漏孔径识别新方法。该方法采用总体局域均值分解方法对... 针对天然气管道泄漏受孔径、传感器距离、管道内压力等多种因素影响,特征提取及识别算法较为复杂的问题,提出了基于总体局域均值分解-相对熵的特征提取算法并结合稀疏表示分类的泄漏孔径识别新方法。该方法采用总体局域均值分解方法对泄漏信号进行自适应分解,得到不同孔径泄漏信号的特征信息,并根据KL散度选择包含主要泄漏信息的PF分量,在此基础上提取多种时频特征参数,获取全面准确表征泄漏信号的特征向量;针对小样本复杂信号的分类,提出稀疏表示分类器实现泄漏孔径准确分类。该分类器采用过完备字典求得测试信号的最稀疏解,并以此解作为测试信号的稀疏重构系数,以获取测试信号在不同类别中的重构信号,最终通过判断测试信号与重构信号的残差值大小完成泄漏孔径分类。实验结果表明,所提出的算法比传统的SVM及BP分类算法识别准确率高。 展开更多
关键词 泄漏孔径识别 总体局域均值分解(ELMD) KL散度 稀疏表示分类器 过完备字典
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部