Total organic carbon (TOC) prediction with elastic parameter inversions has been widely used in the identification and evaluation of source rocks. However, the elastic parameters used to predict TOC are not only deter...Total organic carbon (TOC) prediction with elastic parameter inversions has been widely used in the identification and evaluation of source rocks. However, the elastic parameters used to predict TOC are not only determined by TOC but also depend on the other physical properties of source rocks. Besides, the TOC prediction with the elastic parameters inversion is an indirect method based on the statistical relationship obtained from well logs and experiment data. Therefore, we propose a rock physics model and define a TOC indicator mainly affected by TOC to predict TOC directly. The proposed rock physics model makes the equivalent elastic moduli of source rocks parameterized by the TOC indicator. Combining the equivalent elastic moduli of source rocks and Gray’s approximation leads to a novel linearized approximation of the P-wave reflection coefficient incorporating the TOC indicator. Model examples illustrate that the novel reflectivity approximation well agrees with the exact Zoeppritz equation until incident angles reach 40°. Convoluting the novel P-wave reflection approximation with seismic wavelets as the forward solver, an AVO inversion method based on the Bayesian theory is proposed to invert the TOC indicator with seismic data. The synthetic examples and field tests validate the feasibility and stability of the proposed AVO inversion approach. Using the inversion results of the TOC indicator, TOC is directly and accurately estimated in the target area.展开更多
Classical multi-channel technology can significantly reduce the pre-stack seismic inversion uncertainty, especially for complex geology such as high dipping structures. However, due to the consideration of complex str...Classical multi-channel technology can significantly reduce the pre-stack seismic inversion uncertainty, especially for complex geology such as high dipping structures. However, due to the consideration of complex structure or reflection features, the existing multi-channel inversion methods have to adopt the highly time-consuming strategy of arranging seismic data trace-by-trace, limiting its wide application in pre-stack inversion. A fast pre-stack multi-channel inversion constrained by seismic reflection features has been proposed to address this issue. The key to our method is to re-characterize the reflection features to directly constrain the pre-stack inversion through a Hadamard product operator without rearranging the seismic data. The seismic reflection features can reflect the distribution of the stratum reflection interface, and we obtained them from the post-stack profile by searching the shortest local Euclidean distance between adjacent seismic traces. Instead of directly constructing a large-size reflection features constraint operator advocated by the conventional methods, through decomposing the reflection features along the vertical and horizontal direction at a particular sampling point, we have constructed a computationally well-behaved constraint operator represented by the vertical and horizontal partial derivatives. Based on the Alternating Direction Method of Multipliers (ADMM) optimization, we have derived a fast algorithm for solving the objective function, including Hadamard product operators. Compared with the conventional reflection features constrained inversion, the proposed method is more efficient and accurate, proved on the Overthrust model and a field data set.展开更多
Most current prestack AVA joint inversion methods are based on the exact Zoeppritz equation and its various approximations. However, these equations only reflect the relation between reflection coefficients, incidence...Most current prestack AVA joint inversion methods are based on the exact Zoeppritz equation and its various approximations. However, these equations only reflect the relation between reflection coefficients, incidence angles, and elastic parameters on either side of the interface, which means that wave-propagation effects, such as spherical spreading, attenuation, transmission loss, multiples, and event mismatching of P-and S-waves, are not considered and cannot accurately describe the true propagation characteristics of seismic waves. Conventional AVA inversion methods require that these wave-propagation effects have been fully corrected or attenuated before inversion but these requirements can hardly be satisfied in practice. Using a one-dimensional(1 D) earth model, the reflectivity method can simulate the full wavefield response of seismic waves. Therefore, we propose a nonlinear multicomponent prestack AVA joint inversion method based on the vectorized reflectivity method, which uses a fast nondominated sorting genetic algorithm(NSGA II) to optimize the nonlinear multiobjective function to estimate multiple parameters, such as P-wave velocity, S-wave velocity, and density. This approach is robust because it can simultaneously cope with more than one objective function without introducing weight coefficients. Model tests prove the effectiveness of the proposed inversion method. Based on the inversion results, we find that the nonlinear prestack AVA joint inversion using the reflectivity method yields more accurate inversion results than the inversion by using the exact Zoeppritz equation when the wave-propagation effects of transmission loss and internal multiples are not completely corrected.展开更多
Reflection full-waveform inversion (RFWI) updates the low- and high- wavenumber components, and yields more accurate initial models compared with conventional full-waveform inversion (FWI). However, there is stron...Reflection full-waveform inversion (RFWI) updates the low- and high- wavenumber components, and yields more accurate initial models compared with conventional full-waveform inversion (FWI). However, there is strong nonlinearity in conventional RFWI because of the lack of low-frequency data and the complexity of the amplitude. The separation of phase and amplitude information makes RFWI more linear. Traditional phase-calculation methods face severe phase wrapping. To solve this problem, we propose a modified phase-calculation method that uses the phase-envelope data to obtain the pseudo phase information. Then, we establish a pseudophase-information-based objective function for RFWI, with the corresponding source and gradient terms. Numerical tests verify that the proposed calculation method using the phase-envelope data guarantees the stability and accuracy of the phase information and the convergence of the objective function. The application on a portion of the Sigsbee2A model and comparison with inversion results of the improved RFWI and conventional FWI methods verify that the pseudophase-based RFWI produces a highly accurate and efficient velocity model. Moreover, the proposed method is robust to noise and high frequency.展开更多
Reflection-based inversion that aims to reconstruct the low-to-intermediate wavenumbers of the subsurface model, can be a complementary to refraction-data-driven full-waveform inversion(FWI), especially for the deep t...Reflection-based inversion that aims to reconstruct the low-to-intermediate wavenumbers of the subsurface model, can be a complementary to refraction-data-driven full-waveform inversion(FWI), especially for the deep target area where diving waves cannot be acquired at the surface. Nevertheless, as a typical nonlinear inverse problem, reflection waveform inversion may easily suffer from the cycleskipping issue and have a slow convergence rate, if gradient-based first-order optimization methods are used. To improve the accuracy and convergence rate, we introduce the Hessian operator into reflection traveltime inversion(RTI) and reflection waveform inversion(RWI) in the framework of second-order optimization. A practical two-stage workflow is proposed to build the velocity model, in which Gauss-Newton RTI is first applied to mitigate the cycle-skipping problem and then Gauss-Newton RWI is employed to enhance the model resolution. To make the Gauss-Newton iterations more efficiently and robustly for large-scale applications, we introduce proper preconditioning for the Hessian matrix and design appropriate strategies to reduce the computational costs. The example of a real dataset from East China Sea demonstrates that the cascaded Hessian-based RTI and RWI have good potential to improve velocity model building and seismic imaging, especially for the deep targets.展开更多
Unlike the real-valued plane wave reflection coefficient(PRC)at the pre-critical incident angles,the frequency-and depth-dependent spherical-wave reflection coefficient(SRC)is more accurate and always a complex value,...Unlike the real-valued plane wave reflection coefficient(PRC)at the pre-critical incident angles,the frequency-and depth-dependent spherical-wave reflection coefficient(SRC)is more accurate and always a complex value,which contains more reflection amplitude and phase information.In near field,the imaginary part of complex SRC(phase)cannot be ignored,but it is rarely considered in seismic inversion.To promote the practical application of spherical-wave seismic inversion,a novel spherical-wave inversion strategy is implemented.The complex-valued spherical-wave synthetic seismograms can be obtained by using a simple harmonic superposition model.It is assumed that geophone can only record the real part of complex-valued seismogram.The imaginary part can be further obtained by the Hilbert transform operator.We also propose the concept of complex spherical-wave elastic impedance(EI)and the complex spherical-wave EI equation.Finally,a novel complex spherical-wave EI inversion approach is proposed,which can fully use the reflection information of amplitude,phase,and frequency.With the inverted complex spherical-wave EI,the velocities and density can be further extracted.Synthetic data and field data examples show that the elastic parameters can be reasonably estimated,which illustrate the potential of our spherical-wave inversion approach in practical applications.展开更多
The sand layer B of Dongying Formation of CFD oilfield in Bohai offshore belongs to the middle deep layer of buried hill overlap deposit. Its reservoir distribution has the characteristics of large burial depth, thin ...The sand layer B of Dongying Formation of CFD oilfield in Bohai offshore belongs to the middle deep layer of buried hill overlap deposit. Its reservoir distribution has the characteristics of large burial depth, thin thickness and rapidly lateral change. Because of low resolution of seismic data and overlying sand layer. It is difficult to identify and interpret the structure of sand layer accurately. The uncertainty of structure and reservoir restricts the fine development of B sand layer. In order to identify the top surface of reservoir effectively. The seismic data are processed by using the reflection coefficient inversion method. The results show that the inversion resolution of reflection coefficient is significantly higher than that of original data. The top surface of sand layer B and its overlying sand layer can be well identified and traced. Carrying out structural interpretation of B sand layer based on reflection coefficient inversion data and the microstructure and the formation tip extinction point are implemented. Based on the constraint of new interpretation level, the sedimentary facies plane distribution of B sand layer is described and make prediction of dominant reservoir development area in detail combining with sedimentary paleogeomorphology, along layer attribute section and limited drilling data. The research shows that the study area is mainly from the northwest material sources, the slope belt in the northwest is close to the lake shoreline with a gentle slope and shallow water depositional environment, which is located on the main transport and deposition channels. The shallow water gentle slope landform is suitable for forming large-area sand bar deposition, mainly composed of underwater distributary channel and debouch bars facies, which is the dominant reservoir development area. The research conclusion guides the deployment and implementation of the development well location effectively.展开更多
Taiyuan formation is the main exploration strata in Ordos Basin, and coals are widely developed. Due to the interference of strong reflection of coals, we cannot completely identify the effective reservoir information...Taiyuan formation is the main exploration strata in Ordos Basin, and coals are widely developed. Due to the interference of strong reflection of coals, we cannot completely identify the effective reservoir information of coal-bearing reservoir on seismic data. Previous researchers have studied the reservoir by stripping or weakening the strong reflection, but it is difficult to determine the effectiveness of the remaining reflection seismic data. In this paper, through the establishment of 2D forward model of coal-bearing strata, the corresponding geophysical characteristics of different reflection types of coal-bearing strata are analyzed, and then the favorable sedimentary facies zones for reservoir development are predicted. On this basis, combined with seismic properties, the coal-bearing reservoir is quantitatively characterized by seismic inversion. The above research shows that the Taiyuan formation in LS block of Ordos Basin is affected by coals and forms three or two peaks in different locations. The reservoir plane sedimentary facies zone is effectively characterized by seismic reflection structure. Based on the characteristics of sedimentary facies belt and petrophysical analysis, the reservoir is semi quantitatively characterized by attribute analysis and waveform indication, and quantitatively characterized by pre stack geostatistical inversion. Based on the forward analysis of coal measure strata, this technology characterizes the reservoir facies belt through seismic reflection characteristics, and describes coal measure reservoirs step by step. It effectively guides the exploration of LS block in Ordos Basin, and has achieved good practical application effect.展开更多
Because of the disturbance of some regular waves, the deformity of reflective wave occurs, making the coherence inversion method unreliable. By using the event time from multi fold reflective stack the range of model ...Because of the disturbance of some regular waves, the deformity of reflective wave occurs, making the coherence inversion method unreliable. By using the event time from multi fold reflective stack the range of model parameters obtained by coherence inversion is limited in coherence inversion. Then by adjusting the initial values of the model parameters to make the waveform from the coherence inversion method be consistent with that from the original reflective gathers, the result of the inversion becomes more reliable. The application of this method in processing the reflective gathers in Songzikou by the Jingjiang River of Hubei demonstrates the efficiency of the method.展开更多
Multi-component seismic exploration technology, combining reflected PP- and converted PS-waves, is an effective tool for solving complicated oil and gas exploration problems. The improvement of converted wave resoluti...Multi-component seismic exploration technology, combining reflected PP- and converted PS-waves, is an effective tool for solving complicated oil and gas exploration problems. The improvement of converted wave resolution is one of the key problems. The main factor affecting converted wave resolution is the absorption of seismic waves in overlying strata. In order to remove the effect of absorption on converted waves, inverse Q filtering is used to improve the resolution. In this paper, we present a method to estimate the S-wave Q values from prestack converted wave gathers. Furthermore, we extend a stable and effective poststack inverse Q filtering method to prestack data which uses wave field continuation along the ray path to compensate for attenuation in prestack common shot PP- and PS-waves. The results of theoretical modeling prove that the method of estimating the S-wave Q values has high precision. The results from synthetic and real data prove that the stable inverse Q filtering method can effectively improve the resolution of prestack PP- and PS-waves.展开更多
In this paper, we built upon the estimating primaries by sparse inversion (EPSI) method. We use the 3D curvelet transform and modify the EPSI method to the sparse inversion of the biconvex optimization and Ll-norm r...In this paper, we built upon the estimating primaries by sparse inversion (EPSI) method. We use the 3D curvelet transform and modify the EPSI method to the sparse inversion of the biconvex optimization and Ll-norm regularization, and use alternating optimization to directly estimate the primary reflection coefficients and source wavelet. The 3D curvelet transform is used as a sparseness constraint when inverting the primary reflection coefficients, which results in avoiding the prediction subtraction process in the surface-related multiples elimination (SRME) method. The proposed method not only reduces the damage to the effective waves but also improves the elimination of multiples. It is also a wave equation- based method for elimination of surface multiple reflections, which effectively removes surface multiples under complex submarine conditions.展开更多
Multi-component exploration has many advantages over ordinary P-wave exploration. PP/PS joint AVO analysis and inversion are useful and powerful methods to discriminate between reservoir and non-productive lithology. ...Multi-component exploration has many advantages over ordinary P-wave exploration. PP/PS joint AVO analysis and inversion are useful and powerful methods to discriminate between reservoir and non-productive lithology. In this paper, we derive a new PS-wave reflection coefficient approximation equation which is more accurate at larger incidence angles. The equation is simplified for small incidence angles, which makes AVO analysis clearer and easier for angles less than 30 degrees. Based on this approximation, a PP/PS joint inversion is introduced. A real data example shows that oil sands, brine sands and shales can be differentiated based on the P- to S-wave velocity ratio from the PP/PS joint inversion. Fluid factors and Poisson's ratio also indicate an anomaly in the target zone at the oil well location.展开更多
Although the ambiguity of seismic inversion is widely recognized in both theory and practice, so far as a concrete inversion example is concerned, there is not any objective, controllable method or any standard for ho...Although the ambiguity of seismic inversion is widely recognized in both theory and practice, so far as a concrete inversion example is concerned, there is not any objective, controllable method or any standard for how to evaluate and determine its ambiguity and reliability, especially for the high frequency components beyond the effective seismic frequency band. Taking log-constrained impedance inversion as an example, a new appraisal method is proposed on the basis of analyzing a simple geological model. Firstly, the inverted impedance model is transformed to a reflection coefficient series. Secondly, the maximum effective frequency of the real seismic data is chosen as a cutoff point and the reflection coefficient series is decomposed into two components by low-pass and high-pass filters. Thirdly, the geometrical reflection characteristics of the high-frequency components and that of the real seismic data are compared and analyzed. Then, the reliability of the inverted impedance model is appraised according to the similarity of geometrical characteristics between the high-frequency components and the real seismic data. The new method avoids some subjectivity in appraising the inverted result, and helps to enhance the reliability of reservoir prediction by impedance inversion technology.展开更多
Conventional AVO inversion utilizes the trace amplitudes of CMP gathers. There are three main factors affecting the accuracy of the inversion. First, CMP gathers are based on the hypothesis of horizontal layers but mo...Conventional AVO inversion utilizes the trace amplitudes of CMP gathers. There are three main factors affecting the accuracy of the inversion. First, CMP gathers are based on the hypothesis of horizontal layers but most real layers are not horizontal. Greater layer dip results in a greater difference between the observed CMP gathers and their real location. Second, conventional processing flows such as NMO, DMO, and deconvolution will distort amplitudes. Third, the formulation of reflection coefficient is related to incidence angles and it is difficult to get the relationship between amplitude and incidence angle. Wave equation prestack depth migration has the ability of imaging complex media and steeply dipping layers. It can reduce the errors of conventional processing and move amplitudes back to their real location. With true amplitude migration, common angle gathers abstraction, and AVO inversion, we suggest a method of AVO inversion from common shot gathers in order to reduce the effect of the above factors and improve the accuracy of AVO inversion.展开更多
Comprehensive inversion of logging and seismic data presented in this paper is a method to improve seismic data resolution. It involves using ample high-frequency information and complete low-frequency information of ...Comprehensive inversion of logging and seismic data presented in this paper is a method to improve seismic data resolution. It involves using ample high-frequency information and complete low-frequency information of known logging to make up for the lack of limited bandwidth of practical seismic recording, obtaining an approximate reflection coefficient sequence (or wave impedance) of high resolution by iterative inversion and providing more reliable seismic evidence for further lithologic interpretation and lateral tracking, correlation and prediction of thin reservoir. The comprehensive inversion can be realized in the following steps: (1) to establish an initial model of higher resolution; (2) to obtain wavelets, and (3) to constrain iterative inversion. The key to this inversion lies in building an initial model. It is assumed from our experience that when the initial model is properly given, iterative inversion can be quickly converged to the ideal result.展开更多
Yushu Ms7.1 earthquake occurred on the Ganzi-Yushu fault zone, across which we carried out a joint relative-gravity and seismic-reflection survey, and then performed a gravity inversion constrained by the seismic-refl...Yushu Ms7.1 earthquake occurred on the Ganzi-Yushu fault zone, across which we carried out a joint relative-gravity and seismic-reflection survey, and then performed a gravity inversion constrained by the seismic-reflection result. Based on the data of complete Bouguer gravity anomaly and seismic reflection, we obtained a layered interface structure in deep crust down to Moho. Our study showed that the inversion could reveal the interfaces of strata along the survey profile and the directions of regional faults in two-dimension. From the characteristics of the observed topography of the Moho basement, we tentatively confirmed that the uplift of eastern edge of Qinghai-Tibet plateau was caused by the subduetion of the Indian plate.展开更多
The physical properties of silt in river reservoirs are important to river dynamics. Unfortunately, traditional techniques yield insufficient data. Based on porous media acoustic theory, we invert the acoustic paramet...The physical properties of silt in river reservoirs are important to river dynamics. Unfortunately, traditional techniques yield insufficient data. Based on porous media acoustic theory, we invert the acoustic parameters for the top river-bottom sediments. An explicit form of the acoustic reflection coefficient at the water-sediment interface is derived based on Biot's theory. The choice of parameters in the Blot model is discussed and the relation between acoustic and geological parameters is studied, including that between the reflection coefficient and porosity and the attenuation coefficient and permeability. The attenuation coefficient of the sound wave in the sediments is obtained by analyzing the shift of the signal frequency. The acoustic reflection coefficient at the water-sediment interface is extracted from the sonar signal. Thus, an inversion method of the physical parameters of the river- bottom surface sediments is proposed. The results of an experiment at the Sanmenxia reservoir suggest that the estimated grain size is close to the actual data. This demonstrates the ability of the proposed method to determine the physical parameters of sediments and estimate the grain size.展开更多
To solve problems in small-scale and complex structural traps,the inverse Gaussian-beam stack-imaging method is commonly used to process crosswell seismic wave reflection data.Owing to limited coverage,the imaging qua...To solve problems in small-scale and complex structural traps,the inverse Gaussian-beam stack-imaging method is commonly used to process crosswell seismic wave reflection data.Owing to limited coverage,the imaging quality of conventional ray-based crosswell seismic stack imaging is poor in complex areas;moreover,the imaging range is small and with sever interference because of the arc phenomenon in seismic migration.Thus,we propose the inverse Gaussian-beam stack imaging,in which Gaussian weight functions of rays contributing to the geophones energy are calculated and used to decompose the seismic wavefield.This effectively enlarges the coverage of the reflection points and improves the transverse resolution.Compared with the traditional VSP–CDP stack imaging,the proposed methods extends the imaging range,yields higher horizontal resolution,and is more adaptable to complex geological structures.The method is applied to model a complex structure in the K-area.The results suggest that the wave group of the target layer is clearer,the resolution is higher,and the main frequency of the crosswell seismic section is higher than that in surface seismic exploration The effectiveness and robustness of the method are verified by theoretical model and practical data.展开更多
Research on quantitative models of suspended sediment concentration (SSC) using remote sensing technology is very important to understand the scouting and siltation variation in harbors and water channels. Based onl...Research on quantitative models of suspended sediment concentration (SSC) using remote sensing technology is very important to understand the scouting and siltation variation in harbors and water channels. Based onlaboratory study of the relationship between different suspended sediment concentrations and reflectance spectra measured synchronously, quantitative inversion models of SSC based on single factor, band ratio and sediment parameter were developed, which provides an effective method to retrieve the SSC from satellite images. Results show that the bl (430-500nm) and b3 (670-735nm) are the optimal wavelengths for the estimation of lower SSC and the b4 (780-835nm) is the optimal wavelength to estimate the higher SSC. Furthermore the band ratio B2/B3 can be used to simulate the variation of lower SSC better and the B4/B1 to estimate the higher SSC accurately. Also the inversion models developed by sediment parameters of higher and lower SSCs can get a relatively higher accuracy than the single factor and band ratio models.展开更多
Pre-stack seismic inversion is an important method for fluid identification and reservoir characterization in exploration geophysics. In this study, an effective fluid factor is initially established based on Biot por...Pre-stack seismic inversion is an important method for fluid identification and reservoir characterization in exploration geophysics. In this study, an effective fluid factor is initially established based on Biot poroelastic theory, and a pre-stack seismic inversion method based on Bayesian framework is used to implement the fluid identification. Compared with conventional elastic parameters, fluid factors are more sensitive to oil and gas. However, the coupling effect between rock porosity and fluid content is not considered in conventional fluid factors, which may lead to fuzzy fluid identification results. In addition,existing fluid factors do not adequately consider the physical mechanisms of fluid content, such as squirt flow between cracks and pores. Therefore, we propose a squirt fluid factor(SFF) that minimizes the fluid and pore mixing effects and takes into account the squirt flow. On this basis, a novel P-wave reflection coefficient equation is derived, and the squirt fluid factor is estimated by amplitude variation with offset(AVO) inversion method. The new reflection coefficient equation has sufficient accuracy and can be utilized to estimate the parameters. The effectiveness and superiority of the proposed method in fluid identification are verified by the synthetic and field examples.展开更多
基金The authors acknowledge the sponsorship of National Natural Science Foundation of China(42174139,41974119,42030103)Laoshan Laboratory Science and Technology Innovation Program(LSKj202203406)Science Foundation from Innovation and Technology Support Program for Young Scientists in Colleges of Shandong Province and Ministry of Science and Technology of China(2019RA2136).
文摘Total organic carbon (TOC) prediction with elastic parameter inversions has been widely used in the identification and evaluation of source rocks. However, the elastic parameters used to predict TOC are not only determined by TOC but also depend on the other physical properties of source rocks. Besides, the TOC prediction with the elastic parameters inversion is an indirect method based on the statistical relationship obtained from well logs and experiment data. Therefore, we propose a rock physics model and define a TOC indicator mainly affected by TOC to predict TOC directly. The proposed rock physics model makes the equivalent elastic moduli of source rocks parameterized by the TOC indicator. Combining the equivalent elastic moduli of source rocks and Gray’s approximation leads to a novel linearized approximation of the P-wave reflection coefficient incorporating the TOC indicator. Model examples illustrate that the novel reflectivity approximation well agrees with the exact Zoeppritz equation until incident angles reach 40°. Convoluting the novel P-wave reflection approximation with seismic wavelets as the forward solver, an AVO inversion method based on the Bayesian theory is proposed to invert the TOC indicator with seismic data. The synthetic examples and field tests validate the feasibility and stability of the proposed AVO inversion approach. Using the inversion results of the TOC indicator, TOC is directly and accurately estimated in the target area.
基金We would like to acknowledge the sponsorship of the National Natural Science Foundation of China(42004092,42030103,41974119)Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)(Grant No.2021QNLM020001-6)Young Elite Scientists Sponsorship Program by CAST(2021QNRC001).
文摘Classical multi-channel technology can significantly reduce the pre-stack seismic inversion uncertainty, especially for complex geology such as high dipping structures. However, due to the consideration of complex structure or reflection features, the existing multi-channel inversion methods have to adopt the highly time-consuming strategy of arranging seismic data trace-by-trace, limiting its wide application in pre-stack inversion. A fast pre-stack multi-channel inversion constrained by seismic reflection features has been proposed to address this issue. The key to our method is to re-characterize the reflection features to directly constrain the pre-stack inversion through a Hadamard product operator without rearranging the seismic data. The seismic reflection features can reflect the distribution of the stratum reflection interface, and we obtained them from the post-stack profile by searching the shortest local Euclidean distance between adjacent seismic traces. Instead of directly constructing a large-size reflection features constraint operator advocated by the conventional methods, through decomposing the reflection features along the vertical and horizontal direction at a particular sampling point, we have constructed a computationally well-behaved constraint operator represented by the vertical and horizontal partial derivatives. Based on the Alternating Direction Method of Multipliers (ADMM) optimization, we have derived a fast algorithm for solving the objective function, including Hadamard product operators. Compared with the conventional reflection features constrained inversion, the proposed method is more efficient and accurate, proved on the Overthrust model and a field data set.
基金supported by the National Science and Technology Major Project(No.2016ZX05003-003)
文摘Most current prestack AVA joint inversion methods are based on the exact Zoeppritz equation and its various approximations. However, these equations only reflect the relation between reflection coefficients, incidence angles, and elastic parameters on either side of the interface, which means that wave-propagation effects, such as spherical spreading, attenuation, transmission loss, multiples, and event mismatching of P-and S-waves, are not considered and cannot accurately describe the true propagation characteristics of seismic waves. Conventional AVA inversion methods require that these wave-propagation effects have been fully corrected or attenuated before inversion but these requirements can hardly be satisfied in practice. Using a one-dimensional(1 D) earth model, the reflectivity method can simulate the full wavefield response of seismic waves. Therefore, we propose a nonlinear multicomponent prestack AVA joint inversion method based on the vectorized reflectivity method, which uses a fast nondominated sorting genetic algorithm(NSGA II) to optimize the nonlinear multiobjective function to estimate multiple parameters, such as P-wave velocity, S-wave velocity, and density. This approach is robust because it can simultaneously cope with more than one objective function without introducing weight coefficients. Model tests prove the effectiveness of the proposed inversion method. Based on the inversion results, we find that the nonlinear prestack AVA joint inversion using the reflectivity method yields more accurate inversion results than the inversion by using the exact Zoeppritz equation when the wave-propagation effects of transmission loss and internal multiples are not completely corrected.
基金jointly supported by the NSF(Nos.41104069 and 41274124)the National 973 Project(No.2014CB239006)+1 种基金National Oil and Gas Project(Nos.2016ZX05014001and 2016ZX05002)the Tai Shan Science Foundation for The Excellent Youth Scholars
文摘Reflection full-waveform inversion (RFWI) updates the low- and high- wavenumber components, and yields more accurate initial models compared with conventional full-waveform inversion (FWI). However, there is strong nonlinearity in conventional RFWI because of the lack of low-frequency data and the complexity of the amplitude. The separation of phase and amplitude information makes RFWI more linear. Traditional phase-calculation methods face severe phase wrapping. To solve this problem, we propose a modified phase-calculation method that uses the phase-envelope data to obtain the pseudo phase information. Then, we establish a pseudophase-information-based objective function for RFWI, with the corresponding source and gradient terms. Numerical tests verify that the proposed calculation method using the phase-envelope data guarantees the stability and accuracy of the phase information and the convergence of the objective function. The application on a portion of the Sigsbee2A model and comparison with inversion results of the improved RFWI and conventional FWI methods verify that the pseudophase-based RFWI produces a highly accurate and efficient velocity model. Moreover, the proposed method is robust to noise and high frequency.
基金supported by National Natural Science Foundation of China (42074157)the National Key Research and Development Program of China (2018YFC0310104)the Strategic Priority Research Program of the Chinese Academy of Science(XDA14010203)。
文摘Reflection-based inversion that aims to reconstruct the low-to-intermediate wavenumbers of the subsurface model, can be a complementary to refraction-data-driven full-waveform inversion(FWI), especially for the deep target area where diving waves cannot be acquired at the surface. Nevertheless, as a typical nonlinear inverse problem, reflection waveform inversion may easily suffer from the cycleskipping issue and have a slow convergence rate, if gradient-based first-order optimization methods are used. To improve the accuracy and convergence rate, we introduce the Hessian operator into reflection traveltime inversion(RTI) and reflection waveform inversion(RWI) in the framework of second-order optimization. A practical two-stage workflow is proposed to build the velocity model, in which Gauss-Newton RTI is first applied to mitigate the cycle-skipping problem and then Gauss-Newton RWI is employed to enhance the model resolution. To make the Gauss-Newton iterations more efficiently and robustly for large-scale applications, we introduce proper preconditioning for the Hessian matrix and design appropriate strategies to reduce the computational costs. The example of a real dataset from East China Sea demonstrates that the cascaded Hessian-based RTI and RWI have good potential to improve velocity model building and seismic imaging, especially for the deep targets.
基金the sponsorship of the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)(Grant No.2021QNLM0200016)National Natural Science Foundation of China(42030103,41974119)Science Foundation from Innovation and Technology Support Program for Young Scientists in Colleges of Shandong province and Ministry of Science and Technology of China(2019RA2136)
文摘Unlike the real-valued plane wave reflection coefficient(PRC)at the pre-critical incident angles,the frequency-and depth-dependent spherical-wave reflection coefficient(SRC)is more accurate and always a complex value,which contains more reflection amplitude and phase information.In near field,the imaginary part of complex SRC(phase)cannot be ignored,but it is rarely considered in seismic inversion.To promote the practical application of spherical-wave seismic inversion,a novel spherical-wave inversion strategy is implemented.The complex-valued spherical-wave synthetic seismograms can be obtained by using a simple harmonic superposition model.It is assumed that geophone can only record the real part of complex-valued seismogram.The imaginary part can be further obtained by the Hilbert transform operator.We also propose the concept of complex spherical-wave elastic impedance(EI)and the complex spherical-wave EI equation.Finally,a novel complex spherical-wave EI inversion approach is proposed,which can fully use the reflection information of amplitude,phase,and frequency.With the inverted complex spherical-wave EI,the velocities and density can be further extracted.Synthetic data and field data examples show that the elastic parameters can be reasonably estimated,which illustrate the potential of our spherical-wave inversion approach in practical applications.
文摘The sand layer B of Dongying Formation of CFD oilfield in Bohai offshore belongs to the middle deep layer of buried hill overlap deposit. Its reservoir distribution has the characteristics of large burial depth, thin thickness and rapidly lateral change. Because of low resolution of seismic data and overlying sand layer. It is difficult to identify and interpret the structure of sand layer accurately. The uncertainty of structure and reservoir restricts the fine development of B sand layer. In order to identify the top surface of reservoir effectively. The seismic data are processed by using the reflection coefficient inversion method. The results show that the inversion resolution of reflection coefficient is significantly higher than that of original data. The top surface of sand layer B and its overlying sand layer can be well identified and traced. Carrying out structural interpretation of B sand layer based on reflection coefficient inversion data and the microstructure and the formation tip extinction point are implemented. Based on the constraint of new interpretation level, the sedimentary facies plane distribution of B sand layer is described and make prediction of dominant reservoir development area in detail combining with sedimentary paleogeomorphology, along layer attribute section and limited drilling data. The research shows that the study area is mainly from the northwest material sources, the slope belt in the northwest is close to the lake shoreline with a gentle slope and shallow water depositional environment, which is located on the main transport and deposition channels. The shallow water gentle slope landform is suitable for forming large-area sand bar deposition, mainly composed of underwater distributary channel and debouch bars facies, which is the dominant reservoir development area. The research conclusion guides the deployment and implementation of the development well location effectively.
文摘Taiyuan formation is the main exploration strata in Ordos Basin, and coals are widely developed. Due to the interference of strong reflection of coals, we cannot completely identify the effective reservoir information of coal-bearing reservoir on seismic data. Previous researchers have studied the reservoir by stripping or weakening the strong reflection, but it is difficult to determine the effectiveness of the remaining reflection seismic data. In this paper, through the establishment of 2D forward model of coal-bearing strata, the corresponding geophysical characteristics of different reflection types of coal-bearing strata are analyzed, and then the favorable sedimentary facies zones for reservoir development are predicted. On this basis, combined with seismic properties, the coal-bearing reservoir is quantitatively characterized by seismic inversion. The above research shows that the Taiyuan formation in LS block of Ordos Basin is affected by coals and forms three or two peaks in different locations. The reservoir plane sedimentary facies zone is effectively characterized by seismic reflection structure. Based on the characteristics of sedimentary facies belt and petrophysical analysis, the reservoir is semi quantitatively characterized by attribute analysis and waveform indication, and quantitatively characterized by pre stack geostatistical inversion. Based on the forward analysis of coal measure strata, this technology characterizes the reservoir facies belt through seismic reflection characteristics, and describes coal measure reservoirs step by step. It effectively guides the exploration of LS block in Ordos Basin, and has achieved good practical application effect.
文摘Because of the disturbance of some regular waves, the deformity of reflective wave occurs, making the coherence inversion method unreliable. By using the event time from multi fold reflective stack the range of model parameters obtained by coherence inversion is limited in coherence inversion. Then by adjusting the initial values of the model parameters to make the waveform from the coherence inversion method be consistent with that from the original reflective gathers, the result of the inversion becomes more reliable. The application of this method in processing the reflective gathers in Songzikou by the Jingjiang River of Hubei demonstrates the efficiency of the method.
基金supported by the 863 Program(Grant No.2007AA06Z218)
文摘Multi-component seismic exploration technology, combining reflected PP- and converted PS-waves, is an effective tool for solving complicated oil and gas exploration problems. The improvement of converted wave resolution is one of the key problems. The main factor affecting converted wave resolution is the absorption of seismic waves in overlying strata. In order to remove the effect of absorption on converted waves, inverse Q filtering is used to improve the resolution. In this paper, we present a method to estimate the S-wave Q values from prestack converted wave gathers. Furthermore, we extend a stable and effective poststack inverse Q filtering method to prestack data which uses wave field continuation along the ray path to compensate for attenuation in prestack common shot PP- and PS-waves. The results of theoretical modeling prove that the method of estimating the S-wave Q values has high precision. The results from synthetic and real data prove that the stable inverse Q filtering method can effectively improve the resolution of prestack PP- and PS-waves.
基金supported by the National Science and Technology Major Project (No.2011ZX05023-005-008)
文摘In this paper, we built upon the estimating primaries by sparse inversion (EPSI) method. We use the 3D curvelet transform and modify the EPSI method to the sparse inversion of the biconvex optimization and Ll-norm regularization, and use alternating optimization to directly estimate the primary reflection coefficients and source wavelet. The 3D curvelet transform is used as a sparseness constraint when inverting the primary reflection coefficients, which results in avoiding the prediction subtraction process in the surface-related multiples elimination (SRME) method. The proposed method not only reduces the damage to the effective waves but also improves the elimination of multiples. It is also a wave equation- based method for elimination of surface multiple reflections, which effectively removes surface multiples under complex submarine conditions.
基金supported by the Natural Science Foundation of China (Grant Nos 40974066 and 40821062)the National Basic Research Program of China (Grant No. 2007CB209602)
文摘Multi-component exploration has many advantages over ordinary P-wave exploration. PP/PS joint AVO analysis and inversion are useful and powerful methods to discriminate between reservoir and non-productive lithology. In this paper, we derive a new PS-wave reflection coefficient approximation equation which is more accurate at larger incidence angles. The equation is simplified for small incidence angles, which makes AVO analysis clearer and easier for angles less than 30 degrees. Based on this approximation, a PP/PS joint inversion is introduced. A real data example shows that oil sands, brine sands and shales can be differentiated based on the P- to S-wave velocity ratio from the PP/PS joint inversion. Fluid factors and Poisson's ratio also indicate an anomaly in the target zone at the oil well location.
基金supported by the Major Basic Research Development Program of China’s 973 Project(grant No.2007CB209608)the Science and Technology Innovation Foundation of CNPC(grant No.2010D-5006-0301)
文摘Although the ambiguity of seismic inversion is widely recognized in both theory and practice, so far as a concrete inversion example is concerned, there is not any objective, controllable method or any standard for how to evaluate and determine its ambiguity and reliability, especially for the high frequency components beyond the effective seismic frequency band. Taking log-constrained impedance inversion as an example, a new appraisal method is proposed on the basis of analyzing a simple geological model. Firstly, the inverted impedance model is transformed to a reflection coefficient series. Secondly, the maximum effective frequency of the real seismic data is chosen as a cutoff point and the reflection coefficient series is decomposed into two components by low-pass and high-pass filters. Thirdly, the geometrical reflection characteristics of the high-frequency components and that of the real seismic data are compared and analyzed. Then, the reliability of the inverted impedance model is appraised according to the similarity of geometrical characteristics between the high-frequency components and the real seismic data. The new method avoids some subjectivity in appraising the inverted result, and helps to enhance the reliability of reservoir prediction by impedance inversion technology.
基金This project is sponsored by the "Pre-Cenozoic Marine Oil and Gas Resource Research around the Bohai Area" of the Knowledge Innovation Project of The Chinese Academy of Sciences (No. KZCX1-SW-18)
文摘Conventional AVO inversion utilizes the trace amplitudes of CMP gathers. There are three main factors affecting the accuracy of the inversion. First, CMP gathers are based on the hypothesis of horizontal layers but most real layers are not horizontal. Greater layer dip results in a greater difference between the observed CMP gathers and their real location. Second, conventional processing flows such as NMO, DMO, and deconvolution will distort amplitudes. Third, the formulation of reflection coefficient is related to incidence angles and it is difficult to get the relationship between amplitude and incidence angle. Wave equation prestack depth migration has the ability of imaging complex media and steeply dipping layers. It can reduce the errors of conventional processing and move amplitudes back to their real location. With true amplitude migration, common angle gathers abstraction, and AVO inversion, we suggest a method of AVO inversion from common shot gathers in order to reduce the effect of the above factors and improve the accuracy of AVO inversion.
文摘Comprehensive inversion of logging and seismic data presented in this paper is a method to improve seismic data resolution. It involves using ample high-frequency information and complete low-frequency information of known logging to make up for the lack of limited bandwidth of practical seismic recording, obtaining an approximate reflection coefficient sequence (or wave impedance) of high resolution by iterative inversion and providing more reliable seismic evidence for further lithologic interpretation and lateral tracking, correlation and prediction of thin reservoir. The comprehensive inversion can be realized in the following steps: (1) to establish an initial model of higher resolution; (2) to obtain wavelets, and (3) to constrain iterative inversion. The key to this inversion lies in building an initial model. It is assumed from our experience that when the initial model is properly given, iterative inversion can be quickly converged to the ideal result.
基金supported by the Key Foundation of Institute of Seismology,China Earthquake Administration( IS200916004)
文摘Yushu Ms7.1 earthquake occurred on the Ganzi-Yushu fault zone, across which we carried out a joint relative-gravity and seismic-reflection survey, and then performed a gravity inversion constrained by the seismic-reflection result. Based on the data of complete Bouguer gravity anomaly and seismic reflection, we obtained a layered interface structure in deep crust down to Moho. Our study showed that the inversion could reveal the interfaces of strata along the survey profile and the directions of regional faults in two-dimension. From the characteristics of the observed topography of the Moho basement, we tentatively confirmed that the uplift of eastern edge of Qinghai-Tibet plateau was caused by the subduetion of the Indian plate.
基金supported by the National Key R&D Program of China(Grant No.2016YFC0401608)the Scientific Fund of the Yellow River Institute for Hydraulic Research(Grant Nos.HKY-JBYW-2016-09 and HKY-JBYW-2016-29)
文摘The physical properties of silt in river reservoirs are important to river dynamics. Unfortunately, traditional techniques yield insufficient data. Based on porous media acoustic theory, we invert the acoustic parameters for the top river-bottom sediments. An explicit form of the acoustic reflection coefficient at the water-sediment interface is derived based on Biot's theory. The choice of parameters in the Blot model is discussed and the relation between acoustic and geological parameters is studied, including that between the reflection coefficient and porosity and the attenuation coefficient and permeability. The attenuation coefficient of the sound wave in the sediments is obtained by analyzing the shift of the signal frequency. The acoustic reflection coefficient at the water-sediment interface is extracted from the sonar signal. Thus, an inversion method of the physical parameters of the river- bottom surface sediments is proposed. The results of an experiment at the Sanmenxia reservoir suggest that the estimated grain size is close to the actual data. This demonstrates the ability of the proposed method to determine the physical parameters of sediments and estimate the grain size.
基金sponsored by the National Key R&D Plan Project(Grant No.2016YFC0303900)Natural Science Foundation of China(Grant No.41374145)
文摘To solve problems in small-scale and complex structural traps,the inverse Gaussian-beam stack-imaging method is commonly used to process crosswell seismic wave reflection data.Owing to limited coverage,the imaging quality of conventional ray-based crosswell seismic stack imaging is poor in complex areas;moreover,the imaging range is small and with sever interference because of the arc phenomenon in seismic migration.Thus,we propose the inverse Gaussian-beam stack imaging,in which Gaussian weight functions of rays contributing to the geophones energy are calculated and used to decompose the seismic wavefield.This effectively enlarges the coverage of the reflection points and improves the transverse resolution.Compared with the traditional VSP–CDP stack imaging,the proposed methods extends the imaging range,yields higher horizontal resolution,and is more adaptable to complex geological structures.The method is applied to model a complex structure in the K-area.The results suggest that the wave group of the target layer is clearer,the resolution is higher,and the main frequency of the crosswell seismic section is higher than that in surface seismic exploration The effectiveness and robustness of the method are verified by theoretical model and practical data.
基金Under the auspices of the Key Program of National Natural Science Foundation of China(No.50339010)Huaihe Valley Open Fund Projects(No.Hx2007)
文摘Research on quantitative models of suspended sediment concentration (SSC) using remote sensing technology is very important to understand the scouting and siltation variation in harbors and water channels. Based onlaboratory study of the relationship between different suspended sediment concentrations and reflectance spectra measured synchronously, quantitative inversion models of SSC based on single factor, band ratio and sediment parameter were developed, which provides an effective method to retrieve the SSC from satellite images. Results show that the bl (430-500nm) and b3 (670-735nm) are the optimal wavelengths for the estimation of lower SSC and the b4 (780-835nm) is the optimal wavelength to estimate the higher SSC. Furthermore the band ratio B2/B3 can be used to simulate the variation of lower SSC better and the B4/B1 to estimate the higher SSC accurately. Also the inversion models developed by sediment parameters of higher and lower SSCs can get a relatively higher accuracy than the single factor and band ratio models.
基金the sponsorship of National Natural Science Foundation of China (41974119, 42030103)Science Foundation from Innovation and Technology Support Program for Young Scientists in Colleges of Shandong Province and Ministry of Science and Technology of China (2019RA2136)Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology (Qingdao) (2021QNLM020001-6)。
文摘Pre-stack seismic inversion is an important method for fluid identification and reservoir characterization in exploration geophysics. In this study, an effective fluid factor is initially established based on Biot poroelastic theory, and a pre-stack seismic inversion method based on Bayesian framework is used to implement the fluid identification. Compared with conventional elastic parameters, fluid factors are more sensitive to oil and gas. However, the coupling effect between rock porosity and fluid content is not considered in conventional fluid factors, which may lead to fuzzy fluid identification results. In addition,existing fluid factors do not adequately consider the physical mechanisms of fluid content, such as squirt flow between cracks and pores. Therefore, we propose a squirt fluid factor(SFF) that minimizes the fluid and pore mixing effects and takes into account the squirt flow. On this basis, a novel P-wave reflection coefficient equation is derived, and the squirt fluid factor is estimated by amplitude variation with offset(AVO) inversion method. The new reflection coefficient equation has sufficient accuracy and can be utilized to estimate the parameters. The effectiveness and superiority of the proposed method in fluid identification are verified by the synthetic and field examples.