Spectrum management and resource allocation(RA)problems are challenging and critical in a vast number of research areas such as wireless communications and computer networks.The traditional approaches for solving such...Spectrum management and resource allocation(RA)problems are challenging and critical in a vast number of research areas such as wireless communications and computer networks.The traditional approaches for solving such problems usually consume time and memory,especially for large-size problems.Recently different machine learning approaches have been considered as potential promising techniques for combinatorial optimization problems,especially the generative model of the deep neural networks.In this work,we propose a resource allocation deep autoencoder network,as one of the promising generative models,for enabling spectrum sharing in underlay device-to-device(D2D)communication by solving linear sum assignment problems(LSAPs).Specifically,we investigate the performance of three different architectures for the conditional variational autoencoders(CVAE).The three proposed architecture are the convolutional neural network(CVAECNN)autoencoder,the feed-forward neural network(CVAE-FNN)autoencoder,and the hybrid(H-CVAE)autoencoder.The simulation results show that the proposed approach could be used as a replacement of the conventional RA techniques,such as the Hungarian algorithm,due to its ability to find solutions of LASPs of different sizes with high accuracy and very fast execution time.Moreover,the simulation results reveal that the accuracy of the proposed hybrid autoencoder architecture outperforms the other proposed architectures and the state-of-the-art DNN techniques.展开更多
The subset sum problem is a combinatorial optimization problem,and its complexity belongs to the nondeterministic polynomial time complete(NP-Complete)class.This problem is widely used in encryption,planning or schedu...The subset sum problem is a combinatorial optimization problem,and its complexity belongs to the nondeterministic polynomial time complete(NP-Complete)class.This problem is widely used in encryption,planning or scheduling,and integer partitions.An accurate search algorithm with polynomial time complexity has not been found,which makes it challenging to be solved on classical computers.To effectively solve this problem,we translate it into the quantum Ising model and solve it with a variational quantum optimization method based on conditional values at risk.The proposed model needs only n qubits to encode 2ndimensional search space,which can effectively save the encoding quantum resources.The model inherits the advantages of variational quantum algorithms and can obtain good performance at shallow circuit depths while being robust to noise,and it is convenient to be deployed in the Noisy Intermediate Scale Quantum era.We investigate the effects of the scalability,the variational ansatz type,the variational depth,and noise on the model.Moreover,we also discuss the performance of the model under different conditional values at risk.Through computer simulation,the scale can reach more than nine qubits.By selecting the noise type,we construct simulators with different QVs and study the performance of the model with them.In addition,we deploy the model on a superconducting quantum computer of the Origin Quantum Technology Company and successfully solve the subset sum problem.This model provides a new perspective for solving the subset sum problem.展开更多
The aim of this article is to present new existence results for globally efficient solutions of a strong vector equilibrium problem given by a sum of two functions via a generalized KKM principle, and to establish the...The aim of this article is to present new existence results for globally efficient solutions of a strong vector equilibrium problem given by a sum of two functions via a generalized KKM principle, and to establish the connectedness of the solutions set.展开更多
The sum of reciprocals of Mersenne primes converges to 0.51645417894078856533···, which is an example of a probably infinite subset of primes whose sum of reciprocals is finite and can be computed accur...The sum of reciprocals of Mersenne primes converges to 0.51645417894078856533···, which is an example of a probably infinite subset of primes whose sum of reciprocals is finite and can be computed accurately. This value is larger than , where ?is the set of perfect powers of prime numbers.展开更多
The main purpose of this paper is to extend the Zolotarev's problem concerning with geometric random sums to negative binomial random sums of independent identically distributed random variables.This extension is ...The main purpose of this paper is to extend the Zolotarev's problem concerning with geometric random sums to negative binomial random sums of independent identically distributed random variables.This extension is equivalent to describing all negative binomial infinitely divisible random variables and related results.Using Trotter-operator technique together with Zolotarev-distance's ideality,some upper bounds of convergence rates of normalized negative binomial random sums(in the sense of convergence in distribution)to Gamma,generalized Laplace and generalized Linnik random variables are established.The obtained results are extension and generalization of several known results related to geometric random sums.展开更多
基金supported in part by the China NSFC Grant 61872248Guangdong NSF 2017A030312008+1 种基金Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China (Grant No.161064)GDUPS (2015)
文摘Spectrum management and resource allocation(RA)problems are challenging and critical in a vast number of research areas such as wireless communications and computer networks.The traditional approaches for solving such problems usually consume time and memory,especially for large-size problems.Recently different machine learning approaches have been considered as potential promising techniques for combinatorial optimization problems,especially the generative model of the deep neural networks.In this work,we propose a resource allocation deep autoencoder network,as one of the promising generative models,for enabling spectrum sharing in underlay device-to-device(D2D)communication by solving linear sum assignment problems(LSAPs).Specifically,we investigate the performance of three different architectures for the conditional variational autoencoders(CVAE).The three proposed architecture are the convolutional neural network(CVAECNN)autoencoder,the feed-forward neural network(CVAE-FNN)autoencoder,and the hybrid(H-CVAE)autoencoder.The simulation results show that the proposed approach could be used as a replacement of the conventional RA techniques,such as the Hungarian algorithm,due to its ability to find solutions of LASPs of different sizes with high accuracy and very fast execution time.Moreover,the simulation results reveal that the accuracy of the proposed hybrid autoencoder architecture outperforms the other proposed architectures and the state-of-the-art DNN techniques.
基金supported by the National Key R&D Program of China(Grant No.2019YFA0308700)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301500)。
文摘The subset sum problem is a combinatorial optimization problem,and its complexity belongs to the nondeterministic polynomial time complete(NP-Complete)class.This problem is widely used in encryption,planning or scheduling,and integer partitions.An accurate search algorithm with polynomial time complexity has not been found,which makes it challenging to be solved on classical computers.To effectively solve this problem,we translate it into the quantum Ising model and solve it with a variational quantum optimization method based on conditional values at risk.The proposed model needs only n qubits to encode 2ndimensional search space,which can effectively save the encoding quantum resources.The model inherits the advantages of variational quantum algorithms and can obtain good performance at shallow circuit depths while being robust to noise,and it is convenient to be deployed in the Noisy Intermediate Scale Quantum era.We investigate the effects of the scalability,the variational ansatz type,the variational depth,and noise on the model.Moreover,we also discuss the performance of the model under different conditional values at risk.Through computer simulation,the scale can reach more than nine qubits.By selecting the noise type,we construct simulators with different QVs and study the performance of the model with them.In addition,we deploy the model on a superconducting quantum computer of the Origin Quantum Technology Company and successfully solve the subset sum problem.This model provides a new perspective for solving the subset sum problem.
文摘The aim of this article is to present new existence results for globally efficient solutions of a strong vector equilibrium problem given by a sum of two functions via a generalized KKM principle, and to establish the connectedness of the solutions set.
文摘The sum of reciprocals of Mersenne primes converges to 0.51645417894078856533···, which is an example of a probably infinite subset of primes whose sum of reciprocals is finite and can be computed accurately. This value is larger than , where ?is the set of perfect powers of prime numbers.
文摘The main purpose of this paper is to extend the Zolotarev's problem concerning with geometric random sums to negative binomial random sums of independent identically distributed random variables.This extension is equivalent to describing all negative binomial infinitely divisible random variables and related results.Using Trotter-operator technique together with Zolotarev-distance's ideality,some upper bounds of convergence rates of normalized negative binomial random sums(in the sense of convergence in distribution)to Gamma,generalized Laplace and generalized Linnik random variables are established.The obtained results are extension and generalization of several known results related to geometric random sums.