Although the conventional active appearance model (AAM) has achieved some success for face alignment, it still suffers from the generalization problem when be applied to unseen subjects and images. To deal with the ge...Although the conventional active appearance model (AAM) has achieved some success for face alignment, it still suffers from the generalization problem when be applied to unseen subjects and images. To deal with the gem eralization problem of AAM, we first reformulate the original AAM as sparsity-regularized AAM, which can achieve more compact/better shape and appearance priors by selecting nearest neighbors as the bases of the shape and appearance model. To speed up the fitting procedure, the sparsity in sparsity?regularized AAM is approximated by using the locality (i.e., AT-nearest neighbor), and thus inducing the locality-constrained active appearance model (LC-AAM). The LC-AAM solves a constrained AAM-like fitting problem with the K-nearest neighbors as the bases of shape and appearance model. To alleviate the adverse influence of inaccurate AT-nearest neighbor results, the locality constraint is further embedded in the discriminative fitting method denoted as LC-DFM, which can find better K-nearest neighbor results by employing shape-indexed feature, and can also tolerate some inaccurate neighbors benefited from the regression model rather than the generative model in AAM. Extensive experiments on several datasets demonstrate that our methods outperform the state-of-the-arts in both detection accuracy and generalization ability.展开更多
基金the National Natural Science Foundation of China (Grant Nos. 61650202, 61402443, 61672496)the Strategic Priority Research Program of the CAS (XDB02070004).
文摘Although the conventional active appearance model (AAM) has achieved some success for face alignment, it still suffers from the generalization problem when be applied to unseen subjects and images. To deal with the gem eralization problem of AAM, we first reformulate the original AAM as sparsity-regularized AAM, which can achieve more compact/better shape and appearance priors by selecting nearest neighbors as the bases of the shape and appearance model. To speed up the fitting procedure, the sparsity in sparsity?regularized AAM is approximated by using the locality (i.e., AT-nearest neighbor), and thus inducing the locality-constrained active appearance model (LC-AAM). The LC-AAM solves a constrained AAM-like fitting problem with the K-nearest neighbors as the bases of shape and appearance model. To alleviate the adverse influence of inaccurate AT-nearest neighbor results, the locality constraint is further embedded in the discriminative fitting method denoted as LC-DFM, which can find better K-nearest neighbor results by employing shape-indexed feature, and can also tolerate some inaccurate neighbors benefited from the regression model rather than the generative model in AAM. Extensive experiments on several datasets demonstrate that our methods outperform the state-of-the-arts in both detection accuracy and generalization ability.