This study used spatial autoregression(SAR)model and geographically weighted regression(GWR)model to model the spatial patterns of farmland density and its temporal change in Gucheng County,Hubei Province,China in 199...This study used spatial autoregression(SAR)model and geographically weighted regression(GWR)model to model the spatial patterns of farmland density and its temporal change in Gucheng County,Hubei Province,China in 1999 and 2009,and discussed the difference between global and local spatial autocorrelations in terms of spatial heterogeneity and non-stationarity.Results showed that strong spatial positive correlations existed in the spatial distributions of farmland density,its temporal change and the driving factors,and the coefficients of spatial autocorrelations decreased as the spatial lag distance increased.SAR models revealed the global spatial relations between dependent and independent variables,while the GWR model showed the spatially varying fitting degree and local weighting coefficients of driving factors and farmland indices(i.e.,farmland density and temporal change).The GWR model has smooth process when constructing the farmland spatial model.The coefficients of GWR model can show the accurate influence degrees of different driving factors on the farmland at different geographical locations.The performance indices of GWR model showed that GWR model produced more accurate simulation results than other models at different times,and the improvement precision of GWR model was obvious.The global and local farmland models used in this study showed different characteristics in the spatial distributions of farmland indices at different scales,which may provide the theoretical basis for farmland protection from the influence of different driving factors.展开更多
Aquatic habitat assessments encompass large and small wadeable streams which vary from many meters wide to ephemeral. Differences in stream sizes within or across watersheds, however, may lead to incompatibility of da...Aquatic habitat assessments encompass large and small wadeable streams which vary from many meters wide to ephemeral. Differences in stream sizes within or across watersheds, however, may lead to incompatibility of data at varying spatial scales. Specifically, issues caused by moving between scales on large and small streams are not typically addressed by many forms of statistical analysis, making the comparison of large (>30 m wetted width) and small stream (<10 m wetted width) habitat assessments difficult. Geographically weighted regression (GWR) may provide avenues for efficiency and needed insight into stream habitat data by addressing issues caused by moving between scales. This study examined the ability of GWR to consistently model stream substrate on both large and small wadeable streams at an equivalent resolution. We performed GWR on two groups of 60 randomly selected substrate patches from large and small streams and used depth measurements to model substrate. Our large and small stream substrate models responded equally well to GWR. Results showed no statistically significant difference between GWR R<sup>2 </sup>values of large and small stream streams. Results also provided a much needed method for comparison of large and small wadeable streams. Our results have merit for aquatic resource managers, because they demonstrate ability to spatially model and compare substrate on large and small streams. Using depth to guide substrate modeling by geographically weighted regression has a variety of applications which may help manage, monitor stream health, and interpret substrate change over time.展开更多
The identification of dominant driving factors for different ecosystem services(ESs)is crucial for ecological conservation and sustainable development.However,the spatial heterogeneity of the dominant driving factors ...The identification of dominant driving factors for different ecosystem services(ESs)is crucial for ecological conservation and sustainable development.However,the spatial heterogeneity of the dominant driving factors affecting various ESs has not been adequately elucidated,particularly in ecologically fragile regions.This study employed the integrated valuation of ESs and trade-offs(InVEST)model to evaluate four ESs,namely,water yield(WY),soil conservation(SC),habitat quality(HQ),and carbon storage(CS),and then to identify the dominant driving factors of spatiotemporal differentiation of ES and further to characterize the spatial heterogeneity characteristics of the dominant driving factors in the eco-fragile areas of the upper Yellow River,China from 2000 to 2020.The results demonstrated that WY exhibited northeast-high and northwest-low patterns in the upper Yellow River region,while high values of SC and CS were distributed in central forested areas and a high value of HQ was distributed in vast grassland areas.The CS,WY,and SC exhibited decreasing trends over time.The most critical factors affecting WY,SC,HQ,and CS were the actual evapotranspiration,precipitation,slope,and normalized difference vegetation index,respectively.In addition,the effects of different factors on various ESs exhibited spatial heterogeneity.These results could provide spatial decision support for eco-protection and rehabilitation in ecologically fragile areas.展开更多
There are significant differences between urban and rural bed-and-breakfasts(B&Bs)in terms of customer positioning,economic strength and spatial carrier.Accurately identifying the differences in spatial characteri...There are significant differences between urban and rural bed-and-breakfasts(B&Bs)in terms of customer positioning,economic strength and spatial carrier.Accurately identifying the differences in spatial characteristics and influencing factors of each type,is essential for creating urban and rural B&B agglomeration areas.This study used density-based spatial clustering of applications with noise(DBSCAN)and the multi-scale geographically weighted regression(MGWR)model to explore similarities and differences in the spatial distribution patterns and influencing factors for urban and rural B&Bs on the Jiaodong Peninsula of China from 2010 to 2022.The results showed that:1)both urban and rural B&Bs in Jiaodong Peninsula went through three stages:a slow start from 2010 to 2015,rapid development from 2015 to 2019,and hindered development from 2019 to 2022.However,urban B&Bs demonstrated a higher development speed and agglomeration intensity,leading to an increasingly evident trend of uneven development between the two sectors.2)The clustering scale of both urban and rural B&Bs continued to expand in terms of quantity and volume.Urban B&B clusters characterized by a limited number,but a higher likelihood of transitioning from low-level to high-level clusters.While the number of rural B&B clusters steadily increased over time,their clustering scale was comparatively lower than that of urban B&Bs,and they lacked the presence of high-level clustering.3)In terms of development direction,urban B&B clusters exhibited a relatively stable pattern and evolved into high-level clustering centers within the main urban areas.Conversely,rural B&Bs exhibited a more pronounced spatial diffusion effect,with clusters showing a trend of multi-center development along the coastline.4)Transport emerged as a common influencing factor for both urban and rural B&Bs,with the density of road network having the strongest explanatory power for their spatial distribution.In terms of differences,population agglomeration had a positive impact on the distribution of urban B&Bs and a negative effect on the distribution of rural B&Bs.Rural B&Bs clustering was more influenced by tourism resources compared with urban B&Bs,but increasing tourist stay duration remains an urgent issue to be addressed.The findings of this study could provide a more precise basis for government planning and management of urban and rural B&B agglomeration areas.展开更多
In the Anthropocene era,human activities have become increasingly complex and diversified.The natural ecosystems need higher ecological resilience to ensure regional sustainable development due to rapid urbanization a...In the Anthropocene era,human activities have become increasingly complex and diversified.The natural ecosystems need higher ecological resilience to ensure regional sustainable development due to rapid urbanization and industrialization as well as other intensified human activities,especially in arid and semi-arid areas.In the study,we chose the economic belt on the northern slope of the Tianshan Mountains(EBNSTM)in Xinjiang Uygur Autonomous Region of China as a case study.By collecting geographic data and statistical data from 2010 and 2020,we constructed an ecological resilience assessment model based on the ecosystem habitat quality(EHQ),ecosystem landscape stability(ELS),and ecosystem service value(ESV).Further,we analyzed the temporal and spatial variation characteristics of ecological resilience in the EBNSTM from 2010 to 2020 by spatial autocorrelation analysis,and explored its responses to climate change and human activities using the geographically weighted regression(GWR)model.The results showed that the ecological resilience of the EBNSTM was at a low level and increased from 0.2732 to 0.2773 during 2010–2020.The spatial autocorrelation analysis of ecological resilience exhibited a spatial heterogeneity characteristic of"high in the western region and low in the eastern region",and the spatial clustering trend was enhanced during the study period.Desert,Gobi and rapidly urbanized areas showed low level of ecological resilience,and oasis and mountain areas exhibited high level of ecological resilience.Climate factors had an important impact on ecological resilience.Specifically,average annual temperature and annual precipitation were the key climate factors that improved ecological resilience,while average annual evapotranspiration was the main factor that blocked ecological resilience.Among the human activity factors,the distance from the main road showed a negative correlation with ecological resilience.Both night light index and PM2.5 concentration were negatively correlated with ecological resilience in the areas with better ecological conditions,whereas in the areas with poorer ecological conditions,the correlations were positive.The research findings could provide a scientific reference for protecting the ecological environment and promoting the harmony and stability of the human-land relationship in arid and semi-arid areas.展开更多
To comprehensively understand the law of urban-rural relationship and propose scientific measures of urban-rural coordinated development in Northeast China,this study uses the coupling coordination degree model and ge...To comprehensively understand the law of urban-rural relationship and propose scientific measures of urban-rural coordinated development in Northeast China,this study uses the coupling coordination degree model and geographically and temporally weighted regression(GTWR)model to analyze the spatial-temporal patterns and the corresponding driving mechanisms of its urban-rural coordination since 1990.The results are as follows.First,the urban-rural coupling coordination degree in Northeast China was very low and improved slowly,but its stages of evolution is a good interpretation of the strategic arrangements of China's urbanization.Second,the urban-rural coupling coordination degree in Northeast China had spatial differences and was characterized by central polarization,converging on urban agglomeration,which was high in the south and low in the north.Moreover,the gap between the north and south weakened.Third,the spatial-temporal evolution of the urban-rural coordination relationship in Northeast China was influenced by pulling from the central cities,pushing from rural transformation,and government regulations.The influence intensity of the three mechanisms was weak,but the pulling from the central cities was stronger than that of the other two mechanisms.Furthermore,the spatial difference between the three mechanisms determines the spatial pattern and its evolution of the urban-rural coordination relationship in Northeast China.Fourth,to promote the development of urban-rural coordination in Northeast China,it is essential to advance urban-rural economic correlation,enhance the government^role in regulating and guiding,and adopt different policies for each region in Northeast China.展开更多
Spatial models are effective in obtaining local details on grassland biomass,and their accuracy has important practical significance for the stable management of grasses and livestock.To this end,the present study uti...Spatial models are effective in obtaining local details on grassland biomass,and their accuracy has important practical significance for the stable management of grasses and livestock.To this end,the present study utilized measured quadrat data of grass yield across different regions in the main growing season of temperate grasslands in Ningxia of China(August 2020),combined with hydrometeorology,elevation,net primary productivity(NPP),and other auxiliary data over the same period.Accordingly,non-stationary characteristics of the spatial scale,and the effects of influencing factors on grass yield were analyzed using a mixed geographically weighted regression(MGWR)model.The results showed that the model was suitable for correlation analysis.The spatial scale of ratio resident-area index(PRI)was the largest,followed by the digital elevation model,NPP,distance from gully,distance from river,average July rainfall,and daily temperature range;whereas the spatial scales of night light,distance from roads,and relative humidity(RH)were the most limited.All influencing factors maintained positive and negative effects on grass yield,save for the strictly negative effect of RH.The regression results revealed a multiscale differential spatial response regularity of different influencing factors on grass yield.Regression parameters revealed that the results of Ordinary least squares(OLS)(Adjusted R^(2)=0.642)and geographically weighted regression(GWR)(Adjusted R^(2)=0.797)models were worse than those of MGWR(Adjusted R^(2)=0.889)models.Based on the results of the RMSE and radius index,the simulation effect also was MGWR>GWR>OLS models.Ultimately,the MGWR model held the strongest prediction performance(R^(2)=0.8306).Spatially,the grass yield was high in the south and west,and low in the north and east of the study area.The results of this study provide a new technical support for rapid and accurate estimation of grassland yield to dynamically adjust grazing decision in the semi-arid loess hilly region.展开更多
藏东-川西生态维护水源涵养区位于西南高山峡谷区北部,是中国典型的生态脆弱区,生态系统抗干扰能力差,对气候变化的反应敏感。产水量是生态系统服务中的一项重要功能,研究产水量空间分布特征及其影响因子对该地区水资源保护、涵养,开发...藏东-川西生态维护水源涵养区位于西南高山峡谷区北部,是中国典型的生态脆弱区,生态系统抗干扰能力差,对气候变化的反应敏感。产水量是生态系统服务中的一项重要功能,研究产水量空间分布特征及其影响因子对该地区水资源保护、涵养,开发和利用有重要意义。基于2000—2020年地表覆盖产品、气候、基岩深度、土壤和地形等数据,运用InVEST模型Annual Water Yield模块模拟了藏东-川西地区产水量;结合地理探测器(GDM)分析了造成产水量空间分异的各因子的解释能力;对q>0.1的因子引入多尺度地理加权回归(MGWR)分析它们对研究区不同地理位置产水量的影响程度,并运用Theil-Sen趋势分析、Mann-Kendall显著性检验得到了产水量及其主导因素时空变化特征;同时利用Hurst指数预测了未来短期内产水量上升或下降趋势和评估了研究时段内产水量在不同空间位置的波动水平。结果表明:1)降水量和产水量空间分布在研究区内呈现“东西高,中部低”的分布格局,岷江流域降水量为最大,金沙江流域蒸散水平最高,怒江流域产水量领先其余三个流域;2)除降水量和蒸散发外,藏东-川西地区产水量主要影响因子有气候因子(年均湿度和年均风速)、地形因子(高程)、土壤类型、植被因子(归一化植被指数和净初级生产力)与社会因子(地表覆盖类型和人类活动强度指数);其中降水量、蒸散发、高程、归一化植被指数、净初级生产力和地表覆盖类型是产水量的主导影响因素。3)降水、高程与人类活动强度指数对产水服务的影响有较强的正向作用,而蒸散发、归一化植被指数和净初级生产力展现出较强的负向作用。4)研究区南部区域产水量波动水平高。在未来短期内,研究区95.30%的区域有下降趋势。5)藏东-川西地区不应将盲目提升人工植被覆盖度作为提高产水量首要方案,应注意对天然林的保护和预防石漠化。展开更多
This study examined the spatial heterogeneity association of HIV incidence and socio-economic factors including poverty severity index,permanently employed females and males,unemployed females,percentage of poor house...This study examined the spatial heterogeneity association of HIV incidence and socio-economic factors including poverty severity index,permanently employed females and males,unemployed females,percentage of poor households i.e.,poverty prevalence,night lights index,literacy rate,household food security,and Gini index at district level in Zimbabwe.A mix of spatial analysis methods including Poisson model based on original log likelihood ratios(LLR),global Moran’s I,local indicator of spatial association-LISA were employed to determine the HIV hotspots.Geographically Weighted Poisson Regression(GWPR)and semi-parametric GWPR(s-GWPR)were used to determine the spatial association between HIV incidence and socio-economic factors.HIV incidence(number of cases per 1000)ranged from 0.6(Buhera district)to 13.30(Mangwe district).Spatial clustering of HIV incidence was observed(Global Moran’s I=-0.150;Z score 3.038;p-value 0.002).Significant clusters of HIV were observed at district level.HIV incidence and its association with socio-economic factors varied across the districts except percentage of females unemployed.Intervention programmes to reduce HIV incidence should address the identified socio-economic factors at district level.展开更多
基金Under the auspices of National Natural Science Foundation of China(No.40601073,41101192,41201571)Fundamental Research Funds for the Central Universities(No.2011PY112,2011QC041,2011QC091)Huazhong Agricultural University Scientific&Technological Self-innovation Foundation(No.2011SC21)
文摘This study used spatial autoregression(SAR)model and geographically weighted regression(GWR)model to model the spatial patterns of farmland density and its temporal change in Gucheng County,Hubei Province,China in 1999 and 2009,and discussed the difference between global and local spatial autocorrelations in terms of spatial heterogeneity and non-stationarity.Results showed that strong spatial positive correlations existed in the spatial distributions of farmland density,its temporal change and the driving factors,and the coefficients of spatial autocorrelations decreased as the spatial lag distance increased.SAR models revealed the global spatial relations between dependent and independent variables,while the GWR model showed the spatially varying fitting degree and local weighting coefficients of driving factors and farmland indices(i.e.,farmland density and temporal change).The GWR model has smooth process when constructing the farmland spatial model.The coefficients of GWR model can show the accurate influence degrees of different driving factors on the farmland at different geographical locations.The performance indices of GWR model showed that GWR model produced more accurate simulation results than other models at different times,and the improvement precision of GWR model was obvious.The global and local farmland models used in this study showed different characteristics in the spatial distributions of farmland indices at different scales,which may provide the theoretical basis for farmland protection from the influence of different driving factors.
文摘Aquatic habitat assessments encompass large and small wadeable streams which vary from many meters wide to ephemeral. Differences in stream sizes within or across watersheds, however, may lead to incompatibility of data at varying spatial scales. Specifically, issues caused by moving between scales on large and small streams are not typically addressed by many forms of statistical analysis, making the comparison of large (>30 m wetted width) and small stream (<10 m wetted width) habitat assessments difficult. Geographically weighted regression (GWR) may provide avenues for efficiency and needed insight into stream habitat data by addressing issues caused by moving between scales. This study examined the ability of GWR to consistently model stream substrate on both large and small wadeable streams at an equivalent resolution. We performed GWR on two groups of 60 randomly selected substrate patches from large and small streams and used depth measurements to model substrate. Our large and small stream substrate models responded equally well to GWR. Results showed no statistically significant difference between GWR R<sup>2 </sup>values of large and small stream streams. Results also provided a much needed method for comparison of large and small wadeable streams. Our results have merit for aquatic resource managers, because they demonstrate ability to spatially model and compare substrate on large and small streams. Using depth to guide substrate modeling by geographically weighted regression has a variety of applications which may help manage, monitor stream health, and interpret substrate change over time.
基金Under the auspices of National Natural Science Foundation of China (No.41977402,41977194)。
文摘The identification of dominant driving factors for different ecosystem services(ESs)is crucial for ecological conservation and sustainable development.However,the spatial heterogeneity of the dominant driving factors affecting various ESs has not been adequately elucidated,particularly in ecologically fragile regions.This study employed the integrated valuation of ESs and trade-offs(InVEST)model to evaluate four ESs,namely,water yield(WY),soil conservation(SC),habitat quality(HQ),and carbon storage(CS),and then to identify the dominant driving factors of spatiotemporal differentiation of ES and further to characterize the spatial heterogeneity characteristics of the dominant driving factors in the eco-fragile areas of the upper Yellow River,China from 2000 to 2020.The results demonstrated that WY exhibited northeast-high and northwest-low patterns in the upper Yellow River region,while high values of SC and CS were distributed in central forested areas and a high value of HQ was distributed in vast grassland areas.The CS,WY,and SC exhibited decreasing trends over time.The most critical factors affecting WY,SC,HQ,and CS were the actual evapotranspiration,precipitation,slope,and normalized difference vegetation index,respectively.In addition,the effects of different factors on various ESs exhibited spatial heterogeneity.These results could provide spatial decision support for eco-protection and rehabilitation in ecologically fragile areas.
基金Under the auspices of National Social Science Foundation of China (No.21BJY202)。
文摘There are significant differences between urban and rural bed-and-breakfasts(B&Bs)in terms of customer positioning,economic strength and spatial carrier.Accurately identifying the differences in spatial characteristics and influencing factors of each type,is essential for creating urban and rural B&B agglomeration areas.This study used density-based spatial clustering of applications with noise(DBSCAN)and the multi-scale geographically weighted regression(MGWR)model to explore similarities and differences in the spatial distribution patterns and influencing factors for urban and rural B&Bs on the Jiaodong Peninsula of China from 2010 to 2022.The results showed that:1)both urban and rural B&Bs in Jiaodong Peninsula went through three stages:a slow start from 2010 to 2015,rapid development from 2015 to 2019,and hindered development from 2019 to 2022.However,urban B&Bs demonstrated a higher development speed and agglomeration intensity,leading to an increasingly evident trend of uneven development between the two sectors.2)The clustering scale of both urban and rural B&Bs continued to expand in terms of quantity and volume.Urban B&B clusters characterized by a limited number,but a higher likelihood of transitioning from low-level to high-level clusters.While the number of rural B&B clusters steadily increased over time,their clustering scale was comparatively lower than that of urban B&Bs,and they lacked the presence of high-level clustering.3)In terms of development direction,urban B&B clusters exhibited a relatively stable pattern and evolved into high-level clustering centers within the main urban areas.Conversely,rural B&Bs exhibited a more pronounced spatial diffusion effect,with clusters showing a trend of multi-center development along the coastline.4)Transport emerged as a common influencing factor for both urban and rural B&Bs,with the density of road network having the strongest explanatory power for their spatial distribution.In terms of differences,population agglomeration had a positive impact on the distribution of urban B&Bs and a negative effect on the distribution of rural B&Bs.Rural B&Bs clustering was more influenced by tourism resources compared with urban B&Bs,but increasing tourist stay duration remains an urgent issue to be addressed.The findings of this study could provide a more precise basis for government planning and management of urban and rural B&B agglomeration areas.
基金supported by the Third Xinjiang Scientific Expedition Program (2021xjkk0905).
文摘In the Anthropocene era,human activities have become increasingly complex and diversified.The natural ecosystems need higher ecological resilience to ensure regional sustainable development due to rapid urbanization and industrialization as well as other intensified human activities,especially in arid and semi-arid areas.In the study,we chose the economic belt on the northern slope of the Tianshan Mountains(EBNSTM)in Xinjiang Uygur Autonomous Region of China as a case study.By collecting geographic data and statistical data from 2010 and 2020,we constructed an ecological resilience assessment model based on the ecosystem habitat quality(EHQ),ecosystem landscape stability(ELS),and ecosystem service value(ESV).Further,we analyzed the temporal and spatial variation characteristics of ecological resilience in the EBNSTM from 2010 to 2020 by spatial autocorrelation analysis,and explored its responses to climate change and human activities using the geographically weighted regression(GWR)model.The results showed that the ecological resilience of the EBNSTM was at a low level and increased from 0.2732 to 0.2773 during 2010–2020.The spatial autocorrelation analysis of ecological resilience exhibited a spatial heterogeneity characteristic of"high in the western region and low in the eastern region",and the spatial clustering trend was enhanced during the study period.Desert,Gobi and rapidly urbanized areas showed low level of ecological resilience,and oasis and mountain areas exhibited high level of ecological resilience.Climate factors had an important impact on ecological resilience.Specifically,average annual temperature and annual precipitation were the key climate factors that improved ecological resilience,while average annual evapotranspiration was the main factor that blocked ecological resilience.Among the human activity factors,the distance from the main road showed a negative correlation with ecological resilience.Both night light index and PM2.5 concentration were negatively correlated with ecological resilience in the areas with better ecological conditions,whereas in the areas with poorer ecological conditions,the correlations were positive.The research findings could provide a scientific reference for protecting the ecological environment and promoting the harmony and stability of the human-land relationship in arid and semi-arid areas.
基金Under the auspices of National Natural Science Foundation of China(No.41401182,41501173)Youth Fund for Humanities and Social Sciences of the Ministry of Education of China(No.19YJC630177)+2 种基金Natural Science Foundation of Heilongjiang Province(No.LH2019D008)University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(No.UNPYSCT-2018194)Talent Introduction Project of Southwest University(No.SWU019020)。
文摘To comprehensively understand the law of urban-rural relationship and propose scientific measures of urban-rural coordinated development in Northeast China,this study uses the coupling coordination degree model and geographically and temporally weighted regression(GTWR)model to analyze the spatial-temporal patterns and the corresponding driving mechanisms of its urban-rural coordination since 1990.The results are as follows.First,the urban-rural coupling coordination degree in Northeast China was very low and improved slowly,but its stages of evolution is a good interpretation of the strategic arrangements of China's urbanization.Second,the urban-rural coupling coordination degree in Northeast China had spatial differences and was characterized by central polarization,converging on urban agglomeration,which was high in the south and low in the north.Moreover,the gap between the north and south weakened.Third,the spatial-temporal evolution of the urban-rural coordination relationship in Northeast China was influenced by pulling from the central cities,pushing from rural transformation,and government regulations.The influence intensity of the three mechanisms was weak,but the pulling from the central cities was stronger than that of the other two mechanisms.Furthermore,the spatial difference between the three mechanisms determines the spatial pattern and its evolution of the urban-rural coordination relationship in Northeast China.Fourth,to promote the development of urban-rural coordination in Northeast China,it is essential to advance urban-rural economic correlation,enhance the government^role in regulating and guiding,and adopt different policies for each region in Northeast China.
文摘Spatial models are effective in obtaining local details on grassland biomass,and their accuracy has important practical significance for the stable management of grasses and livestock.To this end,the present study utilized measured quadrat data of grass yield across different regions in the main growing season of temperate grasslands in Ningxia of China(August 2020),combined with hydrometeorology,elevation,net primary productivity(NPP),and other auxiliary data over the same period.Accordingly,non-stationary characteristics of the spatial scale,and the effects of influencing factors on grass yield were analyzed using a mixed geographically weighted regression(MGWR)model.The results showed that the model was suitable for correlation analysis.The spatial scale of ratio resident-area index(PRI)was the largest,followed by the digital elevation model,NPP,distance from gully,distance from river,average July rainfall,and daily temperature range;whereas the spatial scales of night light,distance from roads,and relative humidity(RH)were the most limited.All influencing factors maintained positive and negative effects on grass yield,save for the strictly negative effect of RH.The regression results revealed a multiscale differential spatial response regularity of different influencing factors on grass yield.Regression parameters revealed that the results of Ordinary least squares(OLS)(Adjusted R^(2)=0.642)and geographically weighted regression(GWR)(Adjusted R^(2)=0.797)models were worse than those of MGWR(Adjusted R^(2)=0.889)models.Based on the results of the RMSE and radius index,the simulation effect also was MGWR>GWR>OLS models.Ultimately,the MGWR model held the strongest prediction performance(R^(2)=0.8306).Spatially,the grass yield was high in the south and west,and low in the north and east of the study area.The results of this study provide a new technical support for rapid and accurate estimation of grassland yield to dynamically adjust grazing decision in the semi-arid loess hilly region.
文摘藏东-川西生态维护水源涵养区位于西南高山峡谷区北部,是中国典型的生态脆弱区,生态系统抗干扰能力差,对气候变化的反应敏感。产水量是生态系统服务中的一项重要功能,研究产水量空间分布特征及其影响因子对该地区水资源保护、涵养,开发和利用有重要意义。基于2000—2020年地表覆盖产品、气候、基岩深度、土壤和地形等数据,运用InVEST模型Annual Water Yield模块模拟了藏东-川西地区产水量;结合地理探测器(GDM)分析了造成产水量空间分异的各因子的解释能力;对q>0.1的因子引入多尺度地理加权回归(MGWR)分析它们对研究区不同地理位置产水量的影响程度,并运用Theil-Sen趋势分析、Mann-Kendall显著性检验得到了产水量及其主导因素时空变化特征;同时利用Hurst指数预测了未来短期内产水量上升或下降趋势和评估了研究时段内产水量在不同空间位置的波动水平。结果表明:1)降水量和产水量空间分布在研究区内呈现“东西高,中部低”的分布格局,岷江流域降水量为最大,金沙江流域蒸散水平最高,怒江流域产水量领先其余三个流域;2)除降水量和蒸散发外,藏东-川西地区产水量主要影响因子有气候因子(年均湿度和年均风速)、地形因子(高程)、土壤类型、植被因子(归一化植被指数和净初级生产力)与社会因子(地表覆盖类型和人类活动强度指数);其中降水量、蒸散发、高程、归一化植被指数、净初级生产力和地表覆盖类型是产水量的主导影响因素。3)降水、高程与人类活动强度指数对产水服务的影响有较强的正向作用,而蒸散发、归一化植被指数和净初级生产力展现出较强的负向作用。4)研究区南部区域产水量波动水平高。在未来短期内,研究区95.30%的区域有下降趋势。5)藏东-川西地区不应将盲目提升人工植被覆盖度作为提高产水量首要方案,应注意对天然林的保护和预防石漠化。
文摘This study examined the spatial heterogeneity association of HIV incidence and socio-economic factors including poverty severity index,permanently employed females and males,unemployed females,percentage of poor households i.e.,poverty prevalence,night lights index,literacy rate,household food security,and Gini index at district level in Zimbabwe.A mix of spatial analysis methods including Poisson model based on original log likelihood ratios(LLR),global Moran’s I,local indicator of spatial association-LISA were employed to determine the HIV hotspots.Geographically Weighted Poisson Regression(GWPR)and semi-parametric GWPR(s-GWPR)were used to determine the spatial association between HIV incidence and socio-economic factors.HIV incidence(number of cases per 1000)ranged from 0.6(Buhera district)to 13.30(Mangwe district).Spatial clustering of HIV incidence was observed(Global Moran’s I=-0.150;Z score 3.038;p-value 0.002).Significant clusters of HIV were observed at district level.HIV incidence and its association with socio-economic factors varied across the districts except percentage of females unemployed.Intervention programmes to reduce HIV incidence should address the identified socio-economic factors at district level.