The integration of Unmanned Aerial Vehicles(UAVs)into Intelligent Transportation Systems(ITS)holds trans-formative potential for real-time traffic monitoring,a critical component of emerging smart city infrastructure....The integration of Unmanned Aerial Vehicles(UAVs)into Intelligent Transportation Systems(ITS)holds trans-formative potential for real-time traffic monitoring,a critical component of emerging smart city infrastructure.UAVs offer unique advantages over stationary traffic cameras,including greater flexibility in monitoring large and dynamic urban areas.However,detecting small,densely packed vehicles in UAV imagery remains a significant challenge due to occlusion,variations in lighting,and the complexity of urban landscapes.Conventional models often struggle with these issues,leading to inaccurate detections and reduced performance in practical applications.To address these challenges,this paper introduces CFEMNet,an advanced deep learning model specifically designed for high-precision vehicle detection in complex urban environments.CFEMNet is built on the High-Resolution Network(HRNet)architecture and integrates a Context-aware Feature Extraction Module(CFEM),which combines multi-scale feature learning with a novel Self-Attention and Convolution layer setup within a Multi-scale Feature Block(MFB).This combination allows CFEMNet to accurately capture fine-grained details across varying scales,crucial for detecting small or partially occluded vehicles.Furthermore,the model incorporates an Equivalent Feed-Forward Network(EFFN)Block to ensure robust extraction of both spatial and semantic features,enhancing its ability to distinguish vehicles from similar objects.To optimize computational efficiency,CFEMNet employs a local window adaptation of Multi-head Self-Attention(MSA),which reduces memory overhead without sacrificing detection accuracy.Extensive experimental evaluations on the UAVDT and VisDrone-DET2018 datasets confirm CFEMNet’s superior performance in vehicle detection compared to existing models.This new architecture establishes CFEMNet as a benchmark for UAV-enabled traffic management,offering enhanced precision,reduced computational demands,and scalability for deployment in smart city applications.The advancements presented in CFEMNet contribute significantly to the evolution of smart city technologies,providing a foundation for intelligent and responsive traffic management systems that can adapt to the dynamic demands of urban environments.展开更多
Elucidating the complex dynamic cellular organization in the hypothalamus is critical for understanding its role in coordinating fundamental body functions. Over the past decade, single-cell and spatial omics technolo...Elucidating the complex dynamic cellular organization in the hypothalamus is critical for understanding its role in coordinating fundamental body functions. Over the past decade, single-cell and spatial omics technologies have significantly evolved, overcoming initial technical challenges in capturing and analyzing individual cells. These high-throughput omics technologies now offer a remarkable opportunity to comprehend the complex spatiotemporal patterns of transcriptional diversity and cell-type characteristics across the entire hypothalamus. Current single-cell and single-nucleus RNA sequencing methods comprehensively quantify gene expression by exploring distinct phenotypes across various subregions of the hypothalamus. However, single-cell/single-nucleus RNA sequencing requires isolating the cell/nuclei from the tissue, potentially resulting in the loss of spatial information concerning neuronal networks. Spatial transcriptomics methods, by bypassing the cell dissociation, can elucidate the intricate spatial organization of neural networks through their imaging and sequencing technologies. In this review, we highlight the applicative value of single-cell and spatial transcriptomics in exploring the complex molecular-genetic diversity of hypothalamic cell types, driven by recent high-throughput achievements.展开更多
The infrastructure of most of the practical and construction activity in communities is based on correct understanding and proper use of spatial data in GIS1?and SDI2. Optimal and efficient use of infrastructure syste...The infrastructure of most of the practical and construction activity in communities is based on correct understanding and proper use of spatial data in GIS1?and SDI2. Optimal and efficient use of infrastructure systems of the spatial data by users, depends on how to search and access of user to proper and desired data among informative sources of various organizations. Search operation and access of users to various information of multiple sources located on Spatial Data Infrastructure Network is confusing and time-consuming due to diversity and relatively high volume of spatial information. Because there are numerous classes and subclasses of various complications on the pattern of SDI, unaware user to the pattern may be confused in select displaying the proper spatial layer. In optimum condition, the user should have access to the appropriate data type based on his status and task and environmental conditions. Making intelligent Graphical User Interface by inference based on task information user and his expertise, the appropriate information and consistent with conditions will be achieved. Selecting and displaying of spatial layers related to the technical-organizational approach of system user provides him special assistance both in terms of filtering the irrelevant data and speed of operation in access optimal information than non-selective displaying state. For this purpose, designing and employment context-aware techniques in servicing user interface of system based on recognition of the technical expertise of the user can be a good solution in data adaptive displaying and context-aware servicing to users.展开更多
Glial cells play crucial roles in regulating physiological and pathological functions,including sensation,the response to infection and acute injury,and chronic neurodegenerative disorders.Glial cells include astrocyt...Glial cells play crucial roles in regulating physiological and pathological functions,including sensation,the response to infection and acute injury,and chronic neurodegenerative disorders.Glial cells include astrocytes,microglia,and oligodendrocytes in the central nervous system,and satellite glial cells and Schwann cells in the peripheral nervous system.Despite the greater understanding of glial cell types and functional heterogeneity achieved through single-cell and single-nucleus RNA sequencing in animal models,few studies have investigated the transcriptomic profiles of glial cells in the human spinal cord.Here,we used high-throughput single-nucleus RNA sequencing and spatial transcriptomics to map the cellular and molecular heterogeneity of astrocytes,microglia,and oligodendrocytes in the human spinal cord.To explore the conservation and divergence across species,we compared these findings with those from mice.In the human spinal cord,astrocytes,microglia,and oligodendrocytes were each divided into six distinct transcriptomic subclusters.In the mouse spinal cord,astrocytes,microglia,and oligodendrocytes were divided into five,four,and five distinct transcriptomic subclusters,respectively.The comparative results revealed substantial heterogeneity in all glial cell types between humans and mice.Additionally,we detected sex differences in gene expression in human spinal cord glial cells.Specifically,in all astrocyte subtypes,the levels of NEAT1 and CHI3L1 were higher in males than in females,whereas the levels of CST3 were lower in males than in females.In all microglial subtypes,all differentially expressed genes were located on the sex chromosomes.In addition to sex-specific gene differences,the levels of MT-ND4,MT2A,MT-ATP6,MT-CO3,MT-ND2,MT-ND3,and MT-CO_(2) in all spinal cord oligodendrocyte subtypes were higher in females than in males.Collectively,the present dataset extensively characterizes glial cell heterogeneity and offers a valuable resource for exploring the cellular basis of spinal cordrelated illnesses,including chronic pain,amyotrophic lateral sclerosis,and multiple sclerosis.展开更多
The rapid development of information and communication technologies(ICTs)and cyber-physical systems(CPSs)has paved the way for the increasing popularity of smart products.Context-awareness is an important facet of pro...The rapid development of information and communication technologies(ICTs)and cyber-physical systems(CPSs)has paved the way for the increasing popularity of smart products.Context-awareness is an important facet of product smartness.Unlike artifacts,various bio-systems are naturally characterized by their extraordinary context-awareness.Biologically inspired design(BID)is one of the most commonly employed design strategies.However,few studies have examined the BID of context-aware smart products to date.This paper presents a structured design framework to support the BID of context-aware smart products.The meaning of context-awareness is defined from the perspective of product design.The framework is developed based on the theoretical foundations of the situated function-behavior-structure ontology.A structured design process is prescribed to leverage various biological inspirations in order to support different conceptual design activities,such as problem formulation,structure reformulation,behavior reformulation,and function reformulation.Some existing design methods and emerging design tools are incorporated into the framework.A case study is presented to showcase how this framework can be followed to redesign a robot vacuum cleaner and make it more context-aware.展开更多
This paper discussed the differences of context-aware service between the cloud computing environment and the traditional service system.Given the above differences,the paper subsequently analyzed the changes of conte...This paper discussed the differences of context-aware service between the cloud computing environment and the traditional service system.Given the above differences,the paper subsequently analyzed the changes of context-aware service during preparation,organization and delivery,as well as the resulting changes in service acceptance of consumers.Because of these changes,the context-aware service modes in the cloud computing environment change are intelligent,immersive,highly interactive,and real-time.According to active and responded service,and authorization and non-authorized service,the paper drew a case diagram of context-aware service in Unified Modeling Language(UML) and established four categories of context-aware service modes.展开更多
Autonomic networking is one of the hot research topics in the research area of future network architectures.In this paper, we introduce context-aware and autonomic attributes into DiffServ QoS framework, and propose a...Autonomic networking is one of the hot research topics in the research area of future network architectures.In this paper, we introduce context-aware and autonomic attributes into DiffServ QoS framework, and propose a novel autonomic packet marking(APM) algorithm.In the proposed autonomic QoS framework, APM is capable of collecting various QoS related contexts, and adaptively adjusting its behavior to provide better QoS guarantee according to users' requirements and network conditions.Simulation results show that APM provides better performance than traditional packet marker, and significantly improves user's quality of experience.展开更多
With the development of communication and ubiquitous computing technologies, context-aware services, which acquire contextual information of users and environment, have become critical applications providing customiza...With the development of communication and ubiquitous computing technologies, context-aware services, which acquire contextual information of users and environment, have become critical applications providing customization in mobile commerce. Meanwhile, tourism has attracted increasing attention as a high value-added service and a hot academic topic. However, the research on how to provide tour services based on context-aware services is in fact still at an early stage, limited to concept elaboration, service framework discussion, prototype system development etc. In this paper, we summarized the previous researches on context-aware services to establish the research foundation, put forward a way of analyzing a tour planning problem with a modified model of Traveling Salesman Problem (TSP) and Vehicle Routing Problem (VRP), and we applied an innovated Resource Constrain Project Scheduling Problem (RCPSP) mathematical model to solve the tour planning problem based on context information. The simulation under branch and bound algoritban evaluated the validity of our solution.展开更多
In recent years, several researchers have applied workflow technologies for service automation on ubiquitous compating environments. However, most context-aware workflows do not offer a method to compose several workf...In recent years, several researchers have applied workflow technologies for service automation on ubiquitous compating environments. However, most context-aware workflows do not offer a method to compose several workflows in order to get mare large-scale or complicated workflow. They only provide a simple workflow model, not a composite workflow model. In this paper, the autorhs propose a context-aware workflow model to support composite workflows by expanding the patterns of the existing context-aware wrY:flows, which support the basic woddlow patterns. The suggested workflow model of. fers composite workflow patterns for a context-aware workflow, which consists of various flow patterns, such as simple, split, parallel flows, and subflow. With the suggested model, the model can easily reuse few of existing workflows to make a new workflow. As a result, it can save the development efforts and time of context-aware workflows and increase the workflow reusability. Therefore, the suggested model is expected to make it easy to develop applications related to context-aware workflow services on ubiquitous computing environments.展开更多
Vehicular safety applications, such as cooperative collision warning systems, rely on beaconing to provide situational awareness that is needed to predict and therefore to avoid possible collisions. Beaconing is the c...Vehicular safety applications, such as cooperative collision warning systems, rely on beaconing to provide situational awareness that is needed to predict and therefore to avoid possible collisions. Beaconing is the continual exchange of vehicle motion-state information, such as position, speed, and heading, which enables each vehicle to track its neighboring vehicles in real time. This work presents a context-aware adaptive beaconing scheme that dynamically adapts the beaconing repetition rate based on an estimated channel load and the danger severity of the interactions among vehicles. The safety, efficiency, and scalability of the new scheme is evaluated by simulating vehicle collisions caused by inattentive drivers under various road traffic densities. Simulation results show that the new scheme is more efficient and scalable, and is able to improve safety better than the existing non-adaptive and adaptive rate schemes.展开更多
The digital technologies that run based on users’content provide a platform for users to help air their opinions on various aspects of a particular subject or product.The recommendation agents play a crucial role in ...The digital technologies that run based on users’content provide a platform for users to help air their opinions on various aspects of a particular subject or product.The recommendation agents play a crucial role in personalizing the needs of individual users.Therefore,it is essential to improve the user experience.The recommender system focuses on recommending a set of items to a user to help the decision-making process and is prevalent across e-commerce and media websites.In Context-Aware Recommender Systems(CARS),several influential and contextual variables are identified to provide an effective recommendation.A substantial trade-off is applied in context to achieve the proper accuracy and coverage required for a collaborative recommendation.The CARS will generate more recommendations utilizing adapting them to a certain contextual situation of users.However,the key issue is how contextual information is used to create good and intelligent recommender systems.This paper proposes an Artificial Neural Network(ANN)to achieve contextual recommendations based on usergenerated reviews.The ability of ANNs to learn events and make decisions based on similar events makes it effective for personalized recommendations in CARS.Thus,the most appropriate contexts in which a user should choose an item or service are achieved.This work converts every label set into a Multi-Label Classification(MLC)problem to enhance recommendations.Experimental results show that the proposed ANN performs better in the Binary Relevance(BR)Instance-Based Classifier,the BR Decision Tree,and the Multi-label SVM for Trip Advisor and LDOS-CoMoDa Dataset.Furthermore,the accuracy of the proposed ANN achieves better results by 1.1%to 6.1%compared to other existing methods.展开更多
Osteoarthritis(OA)is a debilitating degenerative disease affecting multiple joint tissues,including cartilage,bone,synovium,and adipose tissues.OA presents diverse clinical phenotypes and distinct molecular endotypes,...Osteoarthritis(OA)is a debilitating degenerative disease affecting multiple joint tissues,including cartilage,bone,synovium,and adipose tissues.OA presents diverse clinical phenotypes and distinct molecular endotypes,including inflammatory,metabolic,mechanical,genetic,and synovial variants.Consequently,innovative technologies are needed to support the development of effective diagnostic and precision therapeutic approaches.Traditional analysis of bulk OA tissue extracts has limitations due to technical constraints,causing challenges in the differentiation between various physiological and pathological phenotypes in joint tissues.This issue has led to standardization difficulties and hindered the success of clinical trials.Gaining insights into the spatial variations of the cellular and molecular structures in OA tissues,encompassing DNA,RNA,metabolites,and proteins,as well as their chemical properties,elemental composition,and mechanical attributes,can contribute to a more comprehensive understanding of the disease subtypes.Spatially resolved biology enables biologists to investigate cells within the context of their tissue microenvironment,providing a more holistic view of cellular function.Recent advances in innovative spatial biology techniques now allow intact tissue sections to be examined using various-omics lenses,such as genomics,transcriptomics,proteomics,and metabolomics,with spatial data.This fusion of approaches provides researchers with critical insights into the molecular composition and functions of the cells and tissues at precise spatial coordinates.Furthermore,advanced imaging techniques,including high-resolution microscopy,hyperspectral imaging,and mass spectrometry imaging,enable the visualization and analysis of the spatial distribution of biomolecules,cells,and tissues.Linking these molecular imaging outputs to conventional tissue histology can facilitate a more comprehensive characterization of disease phenotypes.This review summarizes the recent advancements in the molecular imaging modalities and methodologies for in-depth spatial analysis.It explores their applications,challenges,and potential opportunities in the field of OA.Additionally,this review provides a perspective on the potential research directions for these contemporary approaches that can meet the requirements of clinical diagnoses and the establishment of therapeutic targets for OA.展开更多
In many wireless sensor networks(WSNs)applications,the preservation of source-location privacy plays a critical role in concealing context information,otherwise the monitored entities or subjects may be put in danger....In many wireless sensor networks(WSNs)applications,the preservation of source-location privacy plays a critical role in concealing context information,otherwise the monitored entities or subjects may be put in danger.Many traditional solutions have been proposed based on the creation of random routes,such as random walk and fake sources approach,which will lead to serious packet delay and high energy consumption.Instead of applying the routing in a blind way,this article proposes a novel solution for source location privacy in WSNs by utilizing sensor ability of perceiving the presence a mobile attacker nearby,for patient attackers in particular to increase the safety period and decrease the data delivery delay.The proposed strategy forms an intelligent silent zone(ISZ)by sacrificing only a minority of sensor nodes to entice patient attackers away from real packet routing path.The analysis and simulation results show that the proposed scheme,besides providing source location privacy energy efficiently,can significantly reduce real event reporting latency compared with the existing approaches.展开更多
In this paper,an interactive method is proposed to describe computer animation data and accelerate the process of animation generation.First,a semantic model and a resource description framework(RDF)are utilized to an...In this paper,an interactive method is proposed to describe computer animation data and accelerate the process of animation generation.First,a semantic model and a resource description framework(RDF)are utilized to analyze and describe the relationships between animation data.Second,a novel context model which is able to keep the context-awareness was proposed to facilitate data organization and storage.In our context model,all the main animation elements in a scene are operated as a whole.Then sketch is utilized as the main interactive method to describe the relationships between animation data,edit the context model and make some other user operations.Finally,a context-aware computer animation data description system based on sketch is generated and it also works well in animation generation process.展开更多
Recent years have witnessed the expeditious evolution of intelligentsmart devices and autonomous software technologies with the expandeddomains of computing from workplaces to smart computing in everydayroutine life a...Recent years have witnessed the expeditious evolution of intelligentsmart devices and autonomous software technologies with the expandeddomains of computing from workplaces to smart computing in everydayroutine life activities. This trend has been rapidly advancing towards the newgeneration of systems where smart devices play vital roles in acting intelligently on behalf of the users. Context-awareness has emerged from the pervasive computing paradigm. Context-aware systems have the ability to acquirecontextual information from the surrounding environment autonomously,perform reasoning on it, and then adapt their behaviors accordingly. With theproliferation of context-aware systems and smart sensors, real-time monitoring of environmental situations (context) has become quite trivial. However,it is often challenging because the imperfect nature of context can cause theinconsistent behavior of the system. In this paper, we propose a contextaware intelligent decision support formalism to assist cognitively impairedpeople in managing their routine life activities. For this, we present a semanticknowledge-based framework to contextualize the information from the environment using the protégé ontology editor and Semantic Web Rule Language(SWRL) rules. The set of contextualized information and the set of rulesacquired from the ontology can be used to model Context-aware Multi-AgentSystems (CMAS) in order to autonomously plan all activities of the users andnotify users to act accordingly. To illustrate the use of the proposed formalism,we model a case study of Mild Cognitive Impaired (MCI) patients usingColored Petri Nets (CPN) to show the reasoning process on how the contextaware agents collaboratively plan activities on the user’s behalf and validatethe correctness properties of the system.展开更多
Service-Oriented Communication(SOC)is a key research issue to enable media communications using the Service-Oriented Architecture(SOA).Motivated by the necessity to guarantee the service quality of our webbased multim...Service-Oriented Communication(SOC)is a key research issue to enable media communications using the Service-Oriented Architecture(SOA).Motivated by the necessity to guarantee the service quality of our webbased multimedia conferencing system,we present a Comprehensively Context-Aware(CoCA)approach in this paper.One major problem in the existing end-to-end Quality of Service(QoS)management solutions is that they analyse and exploit the relationships between the QoS metrics and corresponding contexts in an isolated manner.In this paper,we propose a novel approach to leveraging such relationships in a comprehensive manner based on Bayesian networks and the fuzzy set theory.This approach includes three phases:1)information feedback and training,2)QoS-to-context mapping,and3)optimal context adaption.We implement the proposed CoCA in the real multimedia conferencing system and compare its performance with the existing bandwidth aware and playback buffer aware schemes.Experimental results show that the proposed CoCA outperforms the competing approaches in improving the average video Peak Signal-to-Noise Ratio(PSNR).It also exhibits good performance in preventing the playback buffer starvation.展开更多
Context-aware is becoming standard on the most mobile navigation devices. The performance of MEMS IMU/GNSS gains significant benefits from context information in terms of improvement of filter' s adaptive capability....Context-aware is becoming standard on the most mobile navigation devices. The performance of MEMS IMU/GNSS gains significant benefits from context information in terms of improvement of filter' s adaptive capability. A context-aware algorithm using differential carrier phase was proposed to recognize a molile MEMS IMU/GNSS equipped vehicle' s stationary, slow moving or fast moving status. The corresponding context error in awarding was analyzed and consequently conducted two fading factors based on the analysis The factors were applied in the system' s adaptive filter with targeting applications in deep urban where severe multipath presents. The dense urban field test shows that the false alarm of proposed context-aware algorithm is less than 5% and the adaptive filtering can achieve around 15% improvement in terms of lo in two-dimension position accuracy.展开更多
In recent years, the coastal region of Southeast China has witnessed a significant increase in the frequency and intensity of extreme rainfall events associated with landfalling typhoons. The hilly and mountainous ter...In recent years, the coastal region of Southeast China has witnessed a significant increase in the frequency and intensity of extreme rainfall events associated with landfalling typhoons. The hilly and mountainous terrain of this area, combined with rapid rainfall accumulation, has led to a surge in flash floods and severe geological hazards. On August 10, 2019, Typhoon Lekima made landfall in Zhejiang Province, China, and its torrential rainfall triggered extensive landslides, resulting in substantial damage and economic losses. Utilizing high-resolution satellite images, we compiled a landslide inventory of the affected area, which comprises a total of 2,774 rainfallinduced landslides over an area of 2965 km2. The majority of these landslides were small to mediumsized and exhibited elongated, clustered patterns. Some landslides displayed characteristics of high-level initiation, obstructing or partially blocking rivers, leading to the formation of debris dams. We used the inventory to analyze the distribution pattern of the landslides and their relationship with topographical, geological, and hydrological factors. The results showed that landslide abundance was closely related to elevation, slope angle, faults, and road density. The landslides were predominantly located in hilly and low mountainous areas, with elevations ranging from 150 to 300 m, slopes of 20 to 30 degrees, and a NE-SE aspect. Notably, we observed the highest Landslide Number Density(LND) and Landslide Area Percentage(LAP) in the rhyolite region. Landslides were concentrated within approximately 4 km on either side of fault zones, with their size and frequency negatively correlated with distances to faults, roads, and river systems. Furthermore, under the influence of typhoons, regions with denser vegetation cover exhibited higher landslide density, reaching maximum values in shrubland areas. In areas experiencing significantly increased concentrated rainfall, landslide density also showed a corresponding rise. In terms of spatial distribution, the rainfall-triggered landslides primarily occurred in the northeastern part of the study area, particularly in regions characterized by complex topography such as Shanzao Village in Yantan Town, Xixia Township, and Shangzhang Township. The research findings offer crucial data on the rainfallinduced landslides triggered by Typhoon Lekima, shedding light on their spatial distribution patterns. These findings provide valuable references for mitigating risks and planning reconstruction in typhoon-affected area.展开更多
Due to inherent heterogeneity, multi-domain characteristic and highly dynamic nature, authorization is a critical concern in grid computing. This paper proposes a general authorization and access control architecture,...Due to inherent heterogeneity, multi-domain characteristic and highly dynamic nature, authorization is a critical concern in grid computing. This paper proposes a general authorization and access control architecture, grid usage control (GUCON), for grid computing. It's based on the next generation access control mechanism usage control (UCON) model. The GUCON Framework dynamic grants and adapts permission to the subject based on a set of contextual information collected from the system environments; while retaining the authorization by evaluating access requests based on subject attributes, object attributes and requests. In general, GUCON model provides very flexible approaches to adapt the dynamically security request. GUCON model is being implemented in our experiment prototype.展开更多
基金funded by the Deanship of Scientific Research at Northern Border University,Arar,Saudi Arabia through research group No.(RG-NBU-2022-1234).
文摘The integration of Unmanned Aerial Vehicles(UAVs)into Intelligent Transportation Systems(ITS)holds trans-formative potential for real-time traffic monitoring,a critical component of emerging smart city infrastructure.UAVs offer unique advantages over stationary traffic cameras,including greater flexibility in monitoring large and dynamic urban areas.However,detecting small,densely packed vehicles in UAV imagery remains a significant challenge due to occlusion,variations in lighting,and the complexity of urban landscapes.Conventional models often struggle with these issues,leading to inaccurate detections and reduced performance in practical applications.To address these challenges,this paper introduces CFEMNet,an advanced deep learning model specifically designed for high-precision vehicle detection in complex urban environments.CFEMNet is built on the High-Resolution Network(HRNet)architecture and integrates a Context-aware Feature Extraction Module(CFEM),which combines multi-scale feature learning with a novel Self-Attention and Convolution layer setup within a Multi-scale Feature Block(MFB).This combination allows CFEMNet to accurately capture fine-grained details across varying scales,crucial for detecting small or partially occluded vehicles.Furthermore,the model incorporates an Equivalent Feed-Forward Network(EFFN)Block to ensure robust extraction of both spatial and semantic features,enhancing its ability to distinguish vehicles from similar objects.To optimize computational efficiency,CFEMNet employs a local window adaptation of Multi-head Self-Attention(MSA),which reduces memory overhead without sacrificing detection accuracy.Extensive experimental evaluations on the UAVDT and VisDrone-DET2018 datasets confirm CFEMNet’s superior performance in vehicle detection compared to existing models.This new architecture establishes CFEMNet as a benchmark for UAV-enabled traffic management,offering enhanced precision,reduced computational demands,and scalability for deployment in smart city applications.The advancements presented in CFEMNet contribute significantly to the evolution of smart city technologies,providing a foundation for intelligent and responsive traffic management systems that can adapt to the dynamic demands of urban environments.
基金supported by the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI)the Ministry of Health&Welfare,Republic of Korea (HR22C1734)+2 种基金the National Research Foundation (NRF) of Korea (2020R1A6A1A03043539,2020M3A9D8037604,2022R1C1C1004756)(to SBL)the NRF of Korea (2022R1C1C1005741 and RS-2023-00217595)the new faculty research fund of Ajou University School of Medicine (to EJL)。
文摘Elucidating the complex dynamic cellular organization in the hypothalamus is critical for understanding its role in coordinating fundamental body functions. Over the past decade, single-cell and spatial omics technologies have significantly evolved, overcoming initial technical challenges in capturing and analyzing individual cells. These high-throughput omics technologies now offer a remarkable opportunity to comprehend the complex spatiotemporal patterns of transcriptional diversity and cell-type characteristics across the entire hypothalamus. Current single-cell and single-nucleus RNA sequencing methods comprehensively quantify gene expression by exploring distinct phenotypes across various subregions of the hypothalamus. However, single-cell/single-nucleus RNA sequencing requires isolating the cell/nuclei from the tissue, potentially resulting in the loss of spatial information concerning neuronal networks. Spatial transcriptomics methods, by bypassing the cell dissociation, can elucidate the intricate spatial organization of neural networks through their imaging and sequencing technologies. In this review, we highlight the applicative value of single-cell and spatial transcriptomics in exploring the complex molecular-genetic diversity of hypothalamic cell types, driven by recent high-throughput achievements.
文摘The infrastructure of most of the practical and construction activity in communities is based on correct understanding and proper use of spatial data in GIS1?and SDI2. Optimal and efficient use of infrastructure systems of the spatial data by users, depends on how to search and access of user to proper and desired data among informative sources of various organizations. Search operation and access of users to various information of multiple sources located on Spatial Data Infrastructure Network is confusing and time-consuming due to diversity and relatively high volume of spatial information. Because there are numerous classes and subclasses of various complications on the pattern of SDI, unaware user to the pattern may be confused in select displaying the proper spatial layer. In optimum condition, the user should have access to the appropriate data type based on his status and task and environmental conditions. Making intelligent Graphical User Interface by inference based on task information user and his expertise, the appropriate information and consistent with conditions will be achieved. Selecting and displaying of spatial layers related to the technical-organizational approach of system user provides him special assistance both in terms of filtering the irrelevant data and speed of operation in access optimal information than non-selective displaying state. For this purpose, designing and employment context-aware techniques in servicing user interface of system based on recognition of the technical expertise of the user can be a good solution in data adaptive displaying and context-aware servicing to users.
基金supported by the National Natural Science Foundation of China,No.82301403(to DZ)。
文摘Glial cells play crucial roles in regulating physiological and pathological functions,including sensation,the response to infection and acute injury,and chronic neurodegenerative disorders.Glial cells include astrocytes,microglia,and oligodendrocytes in the central nervous system,and satellite glial cells and Schwann cells in the peripheral nervous system.Despite the greater understanding of glial cell types and functional heterogeneity achieved through single-cell and single-nucleus RNA sequencing in animal models,few studies have investigated the transcriptomic profiles of glial cells in the human spinal cord.Here,we used high-throughput single-nucleus RNA sequencing and spatial transcriptomics to map the cellular and molecular heterogeneity of astrocytes,microglia,and oligodendrocytes in the human spinal cord.To explore the conservation and divergence across species,we compared these findings with those from mice.In the human spinal cord,astrocytes,microglia,and oligodendrocytes were each divided into six distinct transcriptomic subclusters.In the mouse spinal cord,astrocytes,microglia,and oligodendrocytes were divided into five,four,and five distinct transcriptomic subclusters,respectively.The comparative results revealed substantial heterogeneity in all glial cell types between humans and mice.Additionally,we detected sex differences in gene expression in human spinal cord glial cells.Specifically,in all astrocyte subtypes,the levels of NEAT1 and CHI3L1 were higher in males than in females,whereas the levels of CST3 were lower in males than in females.In all microglial subtypes,all differentially expressed genes were located on the sex chromosomes.In addition to sex-specific gene differences,the levels of MT-ND4,MT2A,MT-ATP6,MT-CO3,MT-ND2,MT-ND3,and MT-CO_(2) in all spinal cord oligodendrocyte subtypes were higher in females than in males.Collectively,the present dataset extensively characterizes glial cell heterogeneity and offers a valuable resource for exploring the cellular basis of spinal cordrelated illnesses,including chronic pain,amyotrophic lateral sclerosis,and multiple sclerosis.
基金This work was supported in part by the project of the National Natural Science Foundation of China(51875030).
文摘The rapid development of information and communication technologies(ICTs)and cyber-physical systems(CPSs)has paved the way for the increasing popularity of smart products.Context-awareness is an important facet of product smartness.Unlike artifacts,various bio-systems are naturally characterized by their extraordinary context-awareness.Biologically inspired design(BID)is one of the most commonly employed design strategies.However,few studies have examined the BID of context-aware smart products to date.This paper presents a structured design framework to support the BID of context-aware smart products.The meaning of context-awareness is defined from the perspective of product design.The framework is developed based on the theoretical foundations of the situated function-behavior-structure ontology.A structured design process is prescribed to leverage various biological inspirations in order to support different conceptual design activities,such as problem formulation,structure reformulation,behavior reformulation,and function reformulation.Some existing design methods and emerging design tools are incorporated into the framework.A case study is presented to showcase how this framework can be followed to redesign a robot vacuum cleaner and make it more context-aware.
基金the National Key Basic Research Program of China,the National Natural Science Foundation of China,the Ministry of Education of the People's Republic of China,the Fundamental Research Funds for the Central Universities of China
文摘This paper discussed the differences of context-aware service between the cloud computing environment and the traditional service system.Given the above differences,the paper subsequently analyzed the changes of context-aware service during preparation,organization and delivery,as well as the resulting changes in service acceptance of consumers.Because of these changes,the context-aware service modes in the cloud computing environment change are intelligent,immersive,highly interactive,and real-time.According to active and responded service,and authorization and non-authorized service,the paper drew a case diagram of context-aware service in Unified Modeling Language(UML) and established four categories of context-aware service modes.
基金Supported by the National Grand Fundamental Research 973 Program of China under Grant No. 2009CB320504the National High Technology Development 863 Program of China under Grant No.2007AA01Z206 and No.2009AA01Z210the EU FP7 Project EFIPSANS (INFSO-ICT-215549)
文摘Autonomic networking is one of the hot research topics in the research area of future network architectures.In this paper, we introduce context-aware and autonomic attributes into DiffServ QoS framework, and propose a novel autonomic packet marking(APM) algorithm.In the proposed autonomic QoS framework, APM is capable of collecting various QoS related contexts, and adaptively adjusting its behavior to provide better QoS guarantee according to users' requirements and network conditions.Simulation results show that APM provides better performance than traditional packet marker, and significantly improves user's quality of experience.
基金supported in partby the National Natural Science Foundation of China under Grants No. 70972048,No. 71071140,No. 71272076,No. 71201011,No. 51108209,No. 60903014Shanghai Philosophy,Social Science Funds for Youth under Grant No. 2008EZH002
文摘With the development of communication and ubiquitous computing technologies, context-aware services, which acquire contextual information of users and environment, have become critical applications providing customization in mobile commerce. Meanwhile, tourism has attracted increasing attention as a high value-added service and a hot academic topic. However, the research on how to provide tour services based on context-aware services is in fact still at an early stage, limited to concept elaboration, service framework discussion, prototype system development etc. In this paper, we summarized the previous researches on context-aware services to establish the research foundation, put forward a way of analyzing a tour planning problem with a modified model of Traveling Salesman Problem (TSP) and Vehicle Routing Problem (VRP), and we applied an innovated Resource Constrain Project Scheduling Problem (RCPSP) mathematical model to solve the tour planning problem based on context information. The simulation under branch and bound algoritban evaluated the validity of our solution.
基金supported by the The Ministry of Knowledge Economy,Korea,the ITRC(Information Technology Research Center)support program(ⅡTA-2009-(C1090-0902-0007))
文摘In recent years, several researchers have applied workflow technologies for service automation on ubiquitous compating environments. However, most context-aware workflows do not offer a method to compose several workflows in order to get mare large-scale or complicated workflow. They only provide a simple workflow model, not a composite workflow model. In this paper, the autorhs propose a context-aware workflow model to support composite workflows by expanding the patterns of the existing context-aware wrY:flows, which support the basic woddlow patterns. The suggested workflow model of. fers composite workflow patterns for a context-aware workflow, which consists of various flow patterns, such as simple, split, parallel flows, and subflow. With the suggested model, the model can easily reuse few of existing workflows to make a new workflow. As a result, it can save the development efforts and time of context-aware workflows and increase the workflow reusability. Therefore, the suggested model is expected to make it easy to develop applications related to context-aware workflow services on ubiquitous computing environments.
文摘Vehicular safety applications, such as cooperative collision warning systems, rely on beaconing to provide situational awareness that is needed to predict and therefore to avoid possible collisions. Beaconing is the continual exchange of vehicle motion-state information, such as position, speed, and heading, which enables each vehicle to track its neighboring vehicles in real time. This work presents a context-aware adaptive beaconing scheme that dynamically adapts the beaconing repetition rate based on an estimated channel load and the danger severity of the interactions among vehicles. The safety, efficiency, and scalability of the new scheme is evaluated by simulating vehicle collisions caused by inattentive drivers under various road traffic densities. Simulation results show that the new scheme is more efficient and scalable, and is able to improve safety better than the existing non-adaptive and adaptive rate schemes.
文摘The digital technologies that run based on users’content provide a platform for users to help air their opinions on various aspects of a particular subject or product.The recommendation agents play a crucial role in personalizing the needs of individual users.Therefore,it is essential to improve the user experience.The recommender system focuses on recommending a set of items to a user to help the decision-making process and is prevalent across e-commerce and media websites.In Context-Aware Recommender Systems(CARS),several influential and contextual variables are identified to provide an effective recommendation.A substantial trade-off is applied in context to achieve the proper accuracy and coverage required for a collaborative recommendation.The CARS will generate more recommendations utilizing adapting them to a certain contextual situation of users.However,the key issue is how contextual information is used to create good and intelligent recommender systems.This paper proposes an Artificial Neural Network(ANN)to achieve contextual recommendations based on usergenerated reviews.The ability of ANNs to learn events and make decisions based on similar events makes it effective for personalized recommendations in CARS.Thus,the most appropriate contexts in which a user should choose an item or service are achieved.This work converts every label set into a Multi-Label Classification(MLC)problem to enhance recommendations.Experimental results show that the proposed ANN performs better in the Binary Relevance(BR)Instance-Based Classifier,the BR Decision Tree,and the Multi-label SVM for Trip Advisor and LDOS-CoMoDa Dataset.Furthermore,the accuracy of the proposed ANN achieves better results by 1.1%to 6.1%compared to other existing methods.
基金the NHMRC Investigator grant fellowship (APP1176298)the EMCR grant from the Centre for Biomedical Technologies (QUT)+4 种基金the QUT Postgraduate Research Award (QUTPRA)QUT HDR TOP-UP scholarshipQUT HDR Tuition Fee Sponsorshipfunding support from the Academy of Finland (315820)the Jane and Aatos Erkko Foundation (190001).
文摘Osteoarthritis(OA)is a debilitating degenerative disease affecting multiple joint tissues,including cartilage,bone,synovium,and adipose tissues.OA presents diverse clinical phenotypes and distinct molecular endotypes,including inflammatory,metabolic,mechanical,genetic,and synovial variants.Consequently,innovative technologies are needed to support the development of effective diagnostic and precision therapeutic approaches.Traditional analysis of bulk OA tissue extracts has limitations due to technical constraints,causing challenges in the differentiation between various physiological and pathological phenotypes in joint tissues.This issue has led to standardization difficulties and hindered the success of clinical trials.Gaining insights into the spatial variations of the cellular and molecular structures in OA tissues,encompassing DNA,RNA,metabolites,and proteins,as well as their chemical properties,elemental composition,and mechanical attributes,can contribute to a more comprehensive understanding of the disease subtypes.Spatially resolved biology enables biologists to investigate cells within the context of their tissue microenvironment,providing a more holistic view of cellular function.Recent advances in innovative spatial biology techniques now allow intact tissue sections to be examined using various-omics lenses,such as genomics,transcriptomics,proteomics,and metabolomics,with spatial data.This fusion of approaches provides researchers with critical insights into the molecular composition and functions of the cells and tissues at precise spatial coordinates.Furthermore,advanced imaging techniques,including high-resolution microscopy,hyperspectral imaging,and mass spectrometry imaging,enable the visualization and analysis of the spatial distribution of biomolecules,cells,and tissues.Linking these molecular imaging outputs to conventional tissue histology can facilitate a more comprehensive characterization of disease phenotypes.This review summarizes the recent advancements in the molecular imaging modalities and methodologies for in-depth spatial analysis.It explores their applications,challenges,and potential opportunities in the field of OA.Additionally,this review provides a perspective on the potential research directions for these contemporary approaches that can meet the requirements of clinical diagnoses and the establishment of therapeutic targets for OA.
基金supported by the National Natural Science Foundation of China (Nos.61373015,61300052, 41301047)the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Important National Science and Technology Specific Project(No. BA2013049)
文摘In many wireless sensor networks(WSNs)applications,the preservation of source-location privacy plays a critical role in concealing context information,otherwise the monitored entities or subjects may be put in danger.Many traditional solutions have been proposed based on the creation of random routes,such as random walk and fake sources approach,which will lead to serious packet delay and high energy consumption.Instead of applying the routing in a blind way,this article proposes a novel solution for source location privacy in WSNs by utilizing sensor ability of perceiving the presence a mobile attacker nearby,for patient attackers in particular to increase the safety period and decrease the data delivery delay.The proposed strategy forms an intelligent silent zone(ISZ)by sacrificing only a minority of sensor nodes to entice patient attackers away from real packet routing path.The analysis and simulation results show that the proposed scheme,besides providing source location privacy energy efficiently,can significantly reduce real event reporting latency compared with the existing approaches.
基金Supported by the National Key Research and Development Plan(2016YFB1001200)the National Natural Science Foundation of China(U1435220,61232013)
文摘In this paper,an interactive method is proposed to describe computer animation data and accelerate the process of animation generation.First,a semantic model and a resource description framework(RDF)are utilized to analyze and describe the relationships between animation data.Second,a novel context model which is able to keep the context-awareness was proposed to facilitate data organization and storage.In our context model,all the main animation elements in a scene are operated as a whole.Then sketch is utilized as the main interactive method to describe the relationships between animation data,edit the context model and make some other user operations.Finally,a context-aware computer animation data description system based on sketch is generated and it also works well in animation generation process.
文摘Recent years have witnessed the expeditious evolution of intelligentsmart devices and autonomous software technologies with the expandeddomains of computing from workplaces to smart computing in everydayroutine life activities. This trend has been rapidly advancing towards the newgeneration of systems where smart devices play vital roles in acting intelligently on behalf of the users. Context-awareness has emerged from the pervasive computing paradigm. Context-aware systems have the ability to acquirecontextual information from the surrounding environment autonomously,perform reasoning on it, and then adapt their behaviors accordingly. With theproliferation of context-aware systems and smart sensors, real-time monitoring of environmental situations (context) has become quite trivial. However,it is often challenging because the imperfect nature of context can cause theinconsistent behavior of the system. In this paper, we propose a contextaware intelligent decision support formalism to assist cognitively impairedpeople in managing their routine life activities. For this, we present a semanticknowledge-based framework to contextualize the information from the environment using the protégé ontology editor and Semantic Web Rule Language(SWRL) rules. The set of contextualized information and the set of rulesacquired from the ontology can be used to model Context-aware Multi-AgentSystems (CMAS) in order to autonomously plan all activities of the users andnotify users to act accordingly. To illustrate the use of the proposed formalism,we model a case study of Mild Cognitive Impaired (MCI) patients usingColored Petri Nets (CPN) to show the reasoning process on how the contextaware agents collaboratively plan activities on the user’s behalf and validatethe correctness properties of the system.
基金supported by the NationalBasic Research Program of China(973 Program)under Grants No.2011CB302506,No.2011CB302704,No.2012CB315802the National Key Technologies Research and Development Program of China"Research on theMobile Community Cultural Service Aggregation Supporting Technology"under Grant No.2012BAH94F02+5 种基金the Novel Mobile ServiceControl Network Architecture and Key Technologies under Grant No.2010ZX03004001-01the National High Technical Researchand Development Program of China(863 Program)under Grant No.2013AA102301the National Natural Science Foundation of Chinaunder Grants No.61003067,No.61171102,No.61001118,No.61132001Program for NewCentury Excellent Talents in University underGrant No.NCET-11-0592the Project of NewGeneration Broadband Wireless Network under Grant No.2011ZX03002-002-01the Beijing Nova Program under Grant No.2008B50
文摘Service-Oriented Communication(SOC)is a key research issue to enable media communications using the Service-Oriented Architecture(SOA).Motivated by the necessity to guarantee the service quality of our webbased multimedia conferencing system,we present a Comprehensively Context-Aware(CoCA)approach in this paper.One major problem in the existing end-to-end Quality of Service(QoS)management solutions is that they analyse and exploit the relationships between the QoS metrics and corresponding contexts in an isolated manner.In this paper,we propose a novel approach to leveraging such relationships in a comprehensive manner based on Bayesian networks and the fuzzy set theory.This approach includes three phases:1)information feedback and training,2)QoS-to-context mapping,and3)optimal context adaption.We implement the proposed CoCA in the real multimedia conferencing system and compare its performance with the existing bandwidth aware and playback buffer aware schemes.Experimental results show that the proposed CoCA outperforms the competing approaches in improving the average video Peak Signal-to-Noise Ratio(PSNR).It also exhibits good performance in preventing the playback buffer starvation.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61173076)
文摘Context-aware is becoming standard on the most mobile navigation devices. The performance of MEMS IMU/GNSS gains significant benefits from context information in terms of improvement of filter' s adaptive capability. A context-aware algorithm using differential carrier phase was proposed to recognize a molile MEMS IMU/GNSS equipped vehicle' s stationary, slow moving or fast moving status. The corresponding context error in awarding was analyzed and consequently conducted two fading factors based on the analysis The factors were applied in the system' s adaptive filter with targeting applications in deep urban where severe multipath presents. The dense urban field test shows that the false alarm of proposed context-aware algorithm is less than 5% and the adaptive filtering can achieve around 15% improvement in terms of lo in two-dimension position accuracy.
基金supported by National Natural Science Foundation of China (42277136)Natural Science Research Project of Anhui Educational Committee (2023AH030041)National Key Research and Development Program of China (2021YFB3901205)。
文摘In recent years, the coastal region of Southeast China has witnessed a significant increase in the frequency and intensity of extreme rainfall events associated with landfalling typhoons. The hilly and mountainous terrain of this area, combined with rapid rainfall accumulation, has led to a surge in flash floods and severe geological hazards. On August 10, 2019, Typhoon Lekima made landfall in Zhejiang Province, China, and its torrential rainfall triggered extensive landslides, resulting in substantial damage and economic losses. Utilizing high-resolution satellite images, we compiled a landslide inventory of the affected area, which comprises a total of 2,774 rainfallinduced landslides over an area of 2965 km2. The majority of these landslides were small to mediumsized and exhibited elongated, clustered patterns. Some landslides displayed characteristics of high-level initiation, obstructing or partially blocking rivers, leading to the formation of debris dams. We used the inventory to analyze the distribution pattern of the landslides and their relationship with topographical, geological, and hydrological factors. The results showed that landslide abundance was closely related to elevation, slope angle, faults, and road density. The landslides were predominantly located in hilly and low mountainous areas, with elevations ranging from 150 to 300 m, slopes of 20 to 30 degrees, and a NE-SE aspect. Notably, we observed the highest Landslide Number Density(LND) and Landslide Area Percentage(LAP) in the rhyolite region. Landslides were concentrated within approximately 4 km on either side of fault zones, with their size and frequency negatively correlated with distances to faults, roads, and river systems. Furthermore, under the influence of typhoons, regions with denser vegetation cover exhibited higher landslide density, reaching maximum values in shrubland areas. In areas experiencing significantly increased concentrated rainfall, landslide density also showed a corresponding rise. In terms of spatial distribution, the rainfall-triggered landslides primarily occurred in the northeastern part of the study area, particularly in regions characterized by complex topography such as Shanzao Village in Yantan Town, Xixia Township, and Shangzhang Township. The research findings offer crucial data on the rainfallinduced landslides triggered by Typhoon Lekima, shedding light on their spatial distribution patterns. These findings provide valuable references for mitigating risks and planning reconstruction in typhoon-affected area.
基金Supported by the National Natural Science Foun-dation of China (60403027)
文摘Due to inherent heterogeneity, multi-domain characteristic and highly dynamic nature, authorization is a critical concern in grid computing. This paper proposes a general authorization and access control architecture, grid usage control (GUCON), for grid computing. It's based on the next generation access control mechanism usage control (UCON) model. The GUCON Framework dynamic grants and adapts permission to the subject based on a set of contextual information collected from the system environments; while retaining the authorization by evaluating access requests based on subject attributes, object attributes and requests. In general, GUCON model provides very flexible approaches to adapt the dynamically security request. GUCON model is being implemented in our experiment prototype.