期刊文献+
共找到721篇文章
< 1 2 37 >
每页显示 20 50 100
Spatial data mining system for ore-forming prediction 被引量:1
1
作者 Man WANG Linfu XUE Yingwei WANG 《Global Geology》 2007年第1期100-104,共5页
The authors designed the spatial data mining system for ore-forming prediction based on the theory and methods of data mining as well as the technique of spatial database,in combination with the characteristics of geo... The authors designed the spatial data mining system for ore-forming prediction based on the theory and methods of data mining as well as the technique of spatial database,in combination with the characteristics of geological information data.The system consists of data management,data mining and knowledge discovery,knowledge representation.It can syncretize multi-source geosciences data effectively,such as geology,geochemistry,geophysics,RS.The system digitized geological information data as data layer files which consist of the two numerical values,to store these files in the system database.According to the combination of the characters of geological information,metallogenic prognosis was realized,as an example from some area in Heilongjiang Province.The prospect area of hydrothermal copper deposit was determined. 展开更多
关键词 ore-forming prediction spatial data mining multi-source geoscience data
下载PDF
Spatial Multidimensional Association Rules Mining in Forest Fire Data
2
作者 Imas Sukaesih Sitanggang 《Journal of Data Analysis and Information Processing》 2013年第4期90-96,共7页
Hotspots (active fires) indicate spatial distribution of fires. A study on determining influence factors for hotspot occurrence is essential so that fire events can be predicted based on characteristics of a certain a... Hotspots (active fires) indicate spatial distribution of fires. A study on determining influence factors for hotspot occurrence is essential so that fire events can be predicted based on characteristics of a certain area. This study discovers the possible influence factors on the occurrence of fire events using the association rule algorithm namely Apriori in the study area of Rokan Hilir Riau Province Indonesia. The Apriori algorithm was applied on a forest fire dataset which containeddata on physical environment (land cover, river, road and city center), socio-economic (income source, population, and number of school), weather (precipitation, wind speed, and screen temperature), and peatlands. The experiment results revealed 324 multidimensional association rules indicating relationships between hotspots occurrence and other factors.The association among hotspots occurrence with other geographical objects was discovered for the minimum support of 10% and the minimum confidence of 80%. The results show that strong relations between hotspots occurrence and influence factors are found for the support about 12.42%, the confidence of 1, and the lift of 2.26. These factors are precipitation greater than or equal to 3 mm/day, wind speed in [1m/s, 2m/s), non peatland area, screen temperature in [297K, 298K), the number of school in 1 km2 less than or equal to 0.1, and the distance of each hotspot to the nearest road less than or equal to 2.5 km. 展开更多
关键词 data mining spatial Association Rule HOTSPOT OCCURRENCE APRIORI Algorithm
下载PDF
Spatial Data Mining to Support Environmental Management and Decision Making--A Case Study in Brazil
3
作者 Carlos Roberto Valencio Fernando Tochio Ichiba Guilherme Priollli Daniel Rogeria Cristiane Gratao de Souza Leandro Alves Neves Angelo Cesar Colombini 《Computer Technology and Application》 2014年第1期25-32,共8页
The growth of geo-technologies and the development of methods for spatial data collection have resulted in large spatial data repositories that require techniques for spatial information extraction, in order to transf... The growth of geo-technologies and the development of methods for spatial data collection have resulted in large spatial data repositories that require techniques for spatial information extraction, in order to transform raw data into useful previously unknown information. However, due to the high complexity of spatial data mining, the need for spatial relationship comprehension and its characteristics, efforts have been directed towards improving algorithms in order to provide an increase of performance and quality of results. Likewise, several issues have been addressed to spatial data mining, including environmental management, which is the focus of this paper. The main original contribution of this work is the demonstration of spatial data mining using a novel algorithm with a multi-relational approach that was applied to a database related to water resource from a certain region of S^o Paulo State, Brazil, and the discussion about obtained results. Some characteristics involving the location of water resources and the profile of who is administering the water exploration were discovered and discussed. 展开更多
关键词 Water resource management spatial data mining multi-relational spatial data mining spatial clustering environmentalmanagement.
下载PDF
Spatial data mining and visualization based on self-organizing map
4
作者 LIU Shu-ying OUYANG Hong-ji PENG Fang 《通讯和计算机(中英文版)》 2008年第12期55-60,共6页
关键词 空间数据分析 数据挖掘 可视化系统 分析方法
下载PDF
Scaling up the DBSCAN Algorithm for Clustering Large Spatial Databases Based on Sampling Technique 被引量:9
5
作者 Guan Ji hong 1, Zhou Shui geng 2, Bian Fu ling 3, He Yan xiang 1 1. School of Computer, Wuhan University, Wuhan 430072, China 2.State Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, China 3.College of Remote Sensin 《Wuhan University Journal of Natural Sciences》 CAS 2001年第Z1期467-473,共7页
Clustering, in data mining, is a useful technique for discovering interesting data distributions and patterns in the underlying data, and has many application fields, such as statistical data analysis, pattern recogni... Clustering, in data mining, is a useful technique for discovering interesting data distributions and patterns in the underlying data, and has many application fields, such as statistical data analysis, pattern recognition, image processing, and etc. We combine sampling technique with DBSCAN algorithm to cluster large spatial databases, and two sampling based DBSCAN (SDBSCAN) algorithms are developed. One algorithm introduces sampling technique inside DBSCAN, and the other uses sampling procedure outside DBSCAN. Experimental results demonstrate that our algorithms are effective and efficient in clustering large scale spatial databases. 展开更多
关键词 spatial databases data mining CLUSTERING sampling DBSCAN algorithm
下载PDF
Mining multilevel spatial association rules with cloud models 被引量:2
6
作者 杨斌 朱仲英 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第3期314-318,共5页
The traditional generalization-based knowledge discovery method is introduced. A new kind of multilevel spatial association of the rules mining method based on the cloud model is presented. The cloud model integrates ... The traditional generalization-based knowledge discovery method is introduced. A new kind of multilevel spatial association of the rules mining method based on the cloud model is presented. The cloud model integrates the vague and random use of linguistic terms in a unified way. With these models, spatial and nonspatial attribute values are well generalized at multiple levels, allowing discovery of strong spatial association rules. Combining the cloud model based method with Apriori algorithms for mining association rules from a spatial database shows benefits in being effective and flexible. 展开更多
关键词 cloud model spatial association rules virtual cloud spatial data mining
下载PDF
A New Method Based on Association Rules Mining and Geo-filter for Mining Spatial Association Knowledge 被引量:6
7
作者 LIU Yaolin XIE Peng +3 位作者 HE Qingsong ZHAO Xiang WEI Xiaojian TAN Ronghui 《Chinese Geographical Science》 SCIE CSCD 2017年第3期389-401,共13页
Association rule mining methods, as a set of important data mining tools, could be used for mining spatial association rules of spatial data. However, applications of these methods are limited for mining results conta... Association rule mining methods, as a set of important data mining tools, could be used for mining spatial association rules of spatial data. However, applications of these methods are limited for mining results containing large number of redundant rules. In this paper, a new method named Geo-Filtered Association Rules Mining(GFARM) is proposed to effectively eliminate the redundant rules. An application of GFARM is performed as a case study in which association rules are discovered between building land distribution and potential driving factors in Wuhan, China from 1995 to 2015. Ten sets of regular sampling grids with different sizes are used for detecting the influence of multi-scales on GFARM. Results show that the proposed method can filter 50%–70% of redundant rules. GFARM is also successful in discovering spatial association pattern between building land distribution and driving factors. 展开更多
关键词 data mining association rules rules spatial visualization driving factors analysis land use change
下载PDF
GIS-based spatial and temporal changes of land occupation caused by mining activities-a study in eastern part of Hubei Province
8
作者 GUO Li-jun YAN Ya-ya +2 位作者 GUO Li-na MA Jin-long LV Ming-yu 《Journal of Groundwater Science and Engineering》 2016年第1期60-68,共9页
By using multi-source and multi-temporal high resolution remote sensing data and related techniques of remote sensing and geographic information systems, this paper analyzes the spatial and temporal changes of land oc... By using multi-source and multi-temporal high resolution remote sensing data and related techniques of remote sensing and geographic information systems, this paper analyzes the spatial and temporal changes of land occupation caused by mine development in four mining areas of eastern Hubei Province from 2011 to 2014, including Chengchao-Tieshan iron-copper polymetallic deposit area, Daye-Yangxin iron-copper polymetallic deposit area, E-Nan mining area, and Wuxue-Yangxin non-metallic mining area along the Yangtze River. The results show that: In the research area, land occupation of energy mine exploitation is small and in scattered distribution, with coal mine occupying the largest area, showing a downward trend in four years; land occupation of metal mines is large and in centralized distribution, with iron mine and copper mine occupying the largest area, showing a downward trend in four years; non-metallic mines are large and in great quantity, with mines of limestone for building and limestone occupying the largest area, showing a upward trend in four years. 展开更多
关键词 REMOTESENSING data EASTERN HUBEI Province LAND OCCUPATION of mining activities spatial change
下载PDF
Geospatial Area Embedding Based on the Movement Purpose Hypothesis Using Large-Scale Mobility Data from Smart Card
9
作者 Masanao Ochi Yuko Nakashio +2 位作者 Matthew Ruttley Junichiro Mori Ichiro Sakata 《International Journal of Communications, Network and System Sciences》 2016年第11期519-534,共17页
With the deployment of modern infrastructure for public transportation, several studies have analyzed movement patterns of people using smart card data and have characterized different areas. In this paper, we propose... With the deployment of modern infrastructure for public transportation, several studies have analyzed movement patterns of people using smart card data and have characterized different areas. In this paper, we propose the “movement purpose hypothesis” that each movement occurs from two causes: where the person is and what the person wants to do at a given moment. We formulate this hypothesis to a synthesis model in which two network graphs generate a movement network graph. Then we develop two novel-embedding models to assess the hypothesis, and demonstrate that the models obtain a vector representation of a geospatial area using movement patterns of people from large-scale smart card data. We conducted an experiment using smart card data for a large network of railroads in the Kansai region of Japan. We obtained a vector representation of each railroad station and each purpose using the developed embedding models. Results show that network embedding methods are suitable for a large-scale movement of data, and the developed models perform better than existing embedding methods in the task of multi-label classification for train stations on the purpose of use data set. Our proposed models can contribute to the prediction of people flows by discovering underlying representations of geospatial areas from mobility data. 展开更多
关键词 Network Embedding Auto Fare Collection Geographic Information System Trajectory data mining spatial databases
下载PDF
Research on spatial association rules mining in two-direction
10
作者 XUE Li-xia WANG Zuo-cheng 《重庆邮电大学学报(自然科学版)》 2007年第3期314-317,共4页
In data mining from transaction DB, the relationships between the attributes have been focused, but the relationships between the tuples have not been taken into account. In spatial database, there are relationships b... In data mining from transaction DB, the relationships between the attributes have been focused, but the relationships between the tuples have not been taken into account. In spatial database, there are relationships between the attributes and the tuples, and most of the associations occur between the tuples, such as adjacent, intersection, overlap and other topological relationships. So the tasks of spatial data association rules mining include mining the relationships between attributes of spatial objects, which are called as vertical direction DM, and the relationships between the tuples, which are called as horizontal direction DM. This paper analyzes the storage models of spatial data, uses for reference the technologies of data mining in transaction DB, defines the spatial data association rule, including vertical direction association rule, horizontal direction association rule and two-direction association rule, discusses the measurement of spatial association rule interestingness, and puts forward the work flows of spatial association rule data mining. During two-direction spatial association rules mining, an algorithm is proposed to get non-spatial itemsets. By virtue of spatial analysis, the spatial relations were transferred into non-spatial associations and the non-spatial itemsets were gotten. Based on the non-spatial itemsets, the Apriori algorithm or other algorithms could be used to get the frequent itemsets and then the spatial association rules come into being. Using spatial DB, the spatial association rules were gotten to validate the algorithm, and the test results show that this algorithm is efficient and can mine the interesting spatial rules. 展开更多
关键词 数据挖掘 空间数据 联合规则 垂直方向 水平方向
下载PDF
SDML:基于空间数据库的空间数据挖掘语言 被引量:7
11
作者 高韬 谢昆青 +1 位作者 马修军 陈冠华 《北京大学学报(自然科学版)》 CAS CSCD 北大核心 2004年第3期465-472,共8页
设计了一种基于空间数据库的空间数据挖掘语言SDML。根据SDML操作的对象以及挖掘过程的不同阶段 ,SDML语言可以分为视图操纵语言和模型操纵语言 ,分别负责对于数据挖掘视图和模型的操作。详细阐述了SDML的设计思想及其设计方案 ,针对空... 设计了一种基于空间数据库的空间数据挖掘语言SDML。根据SDML操作的对象以及挖掘过程的不同阶段 ,SDML语言可以分为视图操纵语言和模型操纵语言 ,分别负责对于数据挖掘视图和模型的操作。详细阐述了SDML的设计思想及其设计方案 ,针对空间泛化和空间关联这两个典型的空间数据挖掘问题 。 展开更多
关键词 空间数据挖掘 数据挖掘语言 数据挖掘视图 数据挖掘模型
下载PDF
GIS与可视化SDM技术集成问题探讨 被引量:8
12
作者 贾泽露 刘耀林 张彤 《南京师范大学学报(工程技术版)》 CAS 2004年第4期37-42,共6页
随着地理信息获取技术飞速发展 ,使得当前存储在空间数据库中的空间数据的深度和广度得到了前所未有的发展 .为了解决GIS目前面临的“数据爆炸但知识贫乏”的难题 ,在介绍GIS发展现状等相关问题、空间数据挖掘技术、可视化技术的基础上 ... 随着地理信息获取技术飞速发展 ,使得当前存储在空间数据库中的空间数据的深度和广度得到了前所未有的发展 .为了解决GIS目前面临的“数据爆炸但知识贫乏”的难题 ,在介绍GIS发展现状等相关问题、空间数据挖掘技术、可视化技术的基础上 ,分析了GIS中数据挖掘的过程、特点及其相关技术支持 ,探讨了可视化技术在GIS数据挖掘中的重要作用 .对GIS与可视化交互空间数据挖掘集成技术进行了初步的研究 ,分析阐述了GIS与SDM集成的必要性、集成模式和集成路线 ,提出了一个以GIS为中心的二者集成的体系结构 . 展开更多
关键词 GIS 可视化 空间数据挖掘 交互 集成
下载PDF
基于GIS与SDM技术的可视化空间数据分类研究 被引量:5
13
作者 贾泽露 张彤 《测绘科学》 CSCD 北大核心 2007年第1期115-118,共4页
提出将GIS与可视化空间数据挖掘技术之集成的基本框架。在此基础上,基于VisualC++6.0和Ma-pObject2.0组件技术设计和开发了一个可视化交互空间数据挖掘分类系统,系统采用决策树方法和贝叶斯网络作为数据挖掘方法的基本算法,采用训练与... 提出将GIS与可视化空间数据挖掘技术之集成的基本框架。在此基础上,基于VisualC++6.0和Ma-pObject2.0组件技术设计和开发了一个可视化交互空间数据挖掘分类系统,系统采用决策树方法和贝叶斯网络作为数据挖掘方法的基本算法,采用训练与学习相结合实现空间数据的分类。文中用实例数据对系统性能、算法和规则有效性进行了验证。结果表明,该系统是一个适用的、可扩展的可视化交互空间数据挖掘工具,系统能够实现数据挖掘实时动态的交互控制,实现了数据挖掘过程的可视化、挖掘模型的可视化和结果的可视化显示、可视化思考、可视化分析与评价。 展开更多
关键词 GIS 空间数据挖掘 决策树 贝叶斯网络 地理可视化 交互 空间分类
下载PDF
GIS与SDM集成构建土地定级专家信息系统的研究 被引量:2
14
作者 贾泽露 《长江流域资源与环境》 CAS CSSCI CSCD 北大核心 2007年第3期323-328,共6页
提出将GIS与SDM技术集成应用于土地定级信息系统建设,介绍了GIS与SDM集成的基本框架。设计开发了一个基于GIS和SDM技术的土地定级专家信息系统,系统采用决策树方法作为数据挖掘方法的基本算法,通过决策树训练与学习相结合挖掘土地定级规... 提出将GIS与SDM技术集成应用于土地定级信息系统建设,介绍了GIS与SDM集成的基本框架。设计开发了一个基于GIS和SDM技术的土地定级专家信息系统,系统采用决策树方法作为数据挖掘方法的基本算法,通过决策树训练与学习相结合挖掘土地定级规则,运用专家系统推力技术进行匹配推理实现土地定级工作。结合武汉市商业用地类型土地定级实例数据对系统性能进行了验证。结果表明,系统具有良好的移植性、复用性、扩展性和广泛适应性的特点,运用此技术能较好地解决土地定级这种具有半结构和非结构化特点的问题。 展开更多
关键词 GIS(地理信息系统) sdm(空间数据挖掘) 决策树 土地定级 可视化 交互 空间分类
下载PDF
地理信息系统中SDM和CBR的应用研究 被引量:3
15
作者 赵鹏 倪志伟 《安徽大学学报(自然科学版)》 CAS 北大核心 2005年第6期18-21,共4页
地理信息系统最初是作为一种信息处理和空间技术出现的.随着社会的进步和经济的发展,空间决策制定的需求日益增长.G IS中含有大量的空间和属性数据,有着比一般关系数据库和事务数据库更加丰富和复杂的语义信息,隐藏着丰富的知识.本文提... 地理信息系统最初是作为一种信息处理和空间技术出现的.随着社会的进步和经济的发展,空间决策制定的需求日益增长.G IS中含有大量的空间和属性数据,有着比一般关系数据库和事务数据库更加丰富和复杂的语义信息,隐藏着丰富的知识.本文提出了一个智能地理信息系统集成框架,将空间数据挖掘(SDM)和范例推理(CBR)技术应用于其中,加强空间数据、模型分析和表示能力,为决策者提供决策依据,使得决策行为科学化、可视化和直观化. 展开更多
关键词 地理信息系统 空间数据挖掘 范例推理
下载PDF
SDMKD在油气资源勘探中的应用 被引量:1
16
作者 王秀波 郑伟 +1 位作者 曹宝 金川 《中国国土资源经济》 北大核心 2006年第5期25-27,共3页
从空间数据挖掘与知识发现(SDMKD)的内涵入手,对比分析了SDMKD与传统数据挖掘的异同,在归纳SD-MKD的任务与方法、实现过程和研究现状的基础上,对油气资源勘探SDMKD应用现状、面临的主要问题进行了总结和分析。最后,文章给出了油气资源勘... 从空间数据挖掘与知识发现(SDMKD)的内涵入手,对比分析了SDMKD与传统数据挖掘的异同,在归纳SD-MKD的任务与方法、实现过程和研究现状的基础上,对油气资源勘探SDMKD应用现状、面临的主要问题进行了总结和分析。最后,文章给出了油气资源勘探SDMKD的概念模型。 展开更多
关键词 空间数据 数据挖掘 知识发现 油气 资源勘探
下载PDF
基于Oracle Spatial的矿山数据空间数据库的设计 被引量:2
17
作者 张珊 谭海樵 朱宇鹏 《地理空间信息》 2007年第2期91-93,共3页
分析了Oracle Spatial统一管理空间数据和属性数据的方法及优缺点,并介绍了Oracle 10g及Spatial的新特性。在此基础上给出了建立基于Oracle的对象-关系数据模型的适合统一存储和管理矿山数据的空间数据库的具体步骤和方法。
关键词 对象-关系数据模型 ORACLE spatial 矿山数据
下载PDF
基于Oracle Spatial的矿山数据空间数据库的设计 被引量:5
18
作者 张珊 谭海樵 朱宇鹏 《四川测绘》 2006年第2期76-78,71,共4页
分析了Oracle Spatial统一管理空间数据和属性数据的方法及优缺点,并介绍了Oracle 10g及Spatial的新特性。在此基础上,给出了建立基于Oracle的对象-关系数据模型的适合统一存储和管理矿山数据的空间数据库的具体步骤和方法。
关键词 对象-关系数据模型 ORACLE spatial 矿山数据
下载PDF
SDM与GIS的集成模式探讨 被引量:1
19
作者 曾宪珪 廖超 《上海地质》 2005年第2期49-52,共4页
信息时代,知识爆炸,要从海量空间数据中发现隐含的、有价值的潜在知识,必须采用新的手段和方法。对空间数据挖掘与GIS集成,提出了3种可行的集成模式:数据能讯模式、耦合模式和嵌入模式。
关键词 集成模式 sdm 海量空间数据 空间数据挖掘 GIS集成 信息时代 耦合模式 知识
下载PDF
SDM与GIS的集成模式探讨 被引量:1
20
作者 曾宪珪 廖超 《南方冶金学院学报》 2005年第1期1-4,共4页
结合GIS和SDM,论述了要从海量空间数据中发现隐含的、有价值的潜在知识,必须采用新的手段和方法.讨论了空间数据挖掘与GIS集成,提出了3种可行的集成模式:外连接模式、内连接模式、内嵌模式.
关键词 空间数据挖掘 地理信息系统 集成
下载PDF
上一页 1 2 37 下一页 到第
使用帮助 返回顶部