With a focus on the difficulty of quantitatively describing the degree of nonuniformity of temporal and spatial distributions of water resources, quantitative research was carried out on the temporal and spatial distr...With a focus on the difficulty of quantitatively describing the degree of nonuniformity of temporal and spatial distributions of water resources, quantitative research was carried out on the temporal and spatial distribution characteristics of water resources in Guangdong Province from 1956 to 2000 based on a cloud model. The spatial variation of the temporal distribution characteristics and the temporal variation of the spatial distribution characteristics were both analyzed. In addition, the relationships between the numerical characteristics of the cloud model of temporal and spatial distributions of water resources and precipitation were also studied. The results show that, using a cloud model, it is possible to intuitively describe the temporal and spatial distribution characteristics of water resources in cloud images. Water resources in Guangdong Province and their temporal and spatial distribution characteristics are differentiated by their geographic locations. Downstream and coastal areas have a larger amount of water resources with greater uniformity and stronger stability in terms of temporal distribution. Regions with more precipitation possess larger amounts of water resources, and years with more precipitation show greater nonuniformity in the spatial distribution of water resources. The correlation between the nonuniformity of the temporal distribution and local precipitation is small, and no correlation is found between the stability of the nonuniformity of the temporal and spatial distributions of water resources and precipitation. The amount of water resources in Guangdong Province shows an increasing trend from 1956 to 2000, the nonuniformity of the spatial distribution of water resources declines, and the stability of the nonuniformity of the spatial distribution of water resources is enhanced.展开更多
With the classical statistical and geostatistical methods, the study of the spatial distribution and its in- fluence factors of soil water, salinity and organic matter was carried out for 0-70 cm soil layers in Manas ...With the classical statistical and geostatistical methods, the study of the spatial distribution and its in- fluence factors of soil water, salinity and organic matter was carried out for 0-70 cm soil layers in Manas River watershed. The results showed that the soil moisture data from all soil layers exhibited a normal distribution, with average values of 14.08%-21.55%. Geostatistical analysis revealed that the content of soil moisture had a moder- ate spatial autocorrelation with the ratios of nugget/sill ranging from 0.500 to 0.718, which implies that the spatial pattern of soil moisture is influenced by the combined effects of structural factors and random factors. Remarkable spatial distributions with stripped and mottled features were found for soil moisture in all different soil layers. The landform and crop planting had a relatively big influence on the spatial distribution of soil moisture; total soil salinity was high in east but low in west, and non-salinized soil and lightly salinized soil appeared at the northwest and southwest of the study area. Under the effect of reservoir leakage, the heavily salinized soils are widely distributed in the middle of the study area. The areas of the non-salinized and lightly salinized soils decreased gradually with soil depth increment, which is contrary to the case for saline soils that reached a maximum of 245.67 km2 at the layer of 50-70 cm. The types of soil salinization in Manas River watershed were classified into four classes: the sulfate, chloride-sulfate, sulfate-chloride and chloride. The sulfate salinized soil is most widely distributed in the surface layer. The areas of chloride-sulfate, sulfate-chloride, and chloride salinized soils increased gradually along with the increment of soil depth; the variation range of the average values of soil organic matter content was be- tween 7.48%-11.33%. The ratios of nugget/sill reduced gradually from 0.698 to 0.299 with soil depth increment, which shows that the content of soil organic matter has a moderate spatial autocorrelation. The soil organic matter in all soil layers met normal distribution after logarithmic transformation. The spatial distribution patterns of soil or- ganic matter and soil moisture were similar; the areas with high organic matter contents were mainly distributed in the south of the study area, with the lowest contents in the middle.展开更多
The data from the Southern Ocean observations of World Ocean Circulation Experiment (WOCE) are used for analysis and illustration of the features and spatial distributions of Circumpolar Deep Water (CDW) in the so...The data from the Southern Ocean observations of World Ocean Circulation Experiment (WOCE) are used for analysis and illustration of the features and spatial distributions of Circumpolar Deep Water (CDW) in the southern Indian Ocean. It is learnt from the comparison among the vertical distributions of temperature/ salinity/oxygen along the 30°E, 90°E and 145°E sections respectively that some different features of CDW and the fronts can be found at those longitudes, and those differences can be attributed to the zonal transoceanic flow and the merizonal movement in the Circumpolar Deep Water. In fact, the zonal transoceanic flow is the main dynamic factor for the water exchange between the Pacific Ocean and the /ndian Ocean or between the Atlantic Ocean and the Indian Ocean, and for the effects on the spatial distributions of the physical properties in CDW.展开更多
Taking the typical coastal wetlands in the Yellow River Delta as the research object,( i) three parallel strips A1,A2 and A3 were set up along the vertical coastline in the newborn wetland at 60 km south of the Dongwe...Taking the typical coastal wetlands in the Yellow River Delta as the research object,( i) three parallel strips A1,A2 and A3 were set up along the vertical coastline in the newborn wetland at 60 km south of the Dongwenliu Management Station in the Yellow River Delta Nature Reserve.( ii) Sample plots B( Phragmites communis area),C( Suaeda glauca area),and D( Tamarix chinensis area) were set up near the field ecological station of the coastal wetlands.Through collecting sediment samples and measuring nitrogen and phosphorus contents,the spatial distribution characteristics of nitrogen and phosphorus in sediments of coastal wetlands were studied.Following results were obtained.( i) The concentration of TN in the 0-20 cm surface sediments of the coastal wetlands in the Yellow River Delta was in the range of130-695 mg/kg,the concentration of TP was in the range of 589-778 mg/kg,and the average content of TN and TP was 372.18 and 660.82 mg/kg respectively.( ii) From the remote coastal area of the Yellow River to the near coastal area,the horizontal distribution of TN in the sediments was different at each level,and the TN content in the surface sediments gradually decreased; the content of TP generally increased.( iii) At the profile level,the content of TN and TP generally showed a trend of decreasing gradually from the surface layer and tending to be stable,and the peak appeared at the outermost layer.( iv) In the sediments under different vegetation cover,TN was more evenly distributed on each profile,and the distribution of TP on each profile was different.TN showed the largest distribution in the 0-20 cm surface sediments in the T.chinensis area,while TP had the largest distribution in the 80-100 cm bottom sediments in the T.chinensis area.展开更多
Nitrite in drinking water is a potential health hazard and monitoring its concentrations in distributed water is of paramount importance. When monochloramine is used in secondary disinfection in drinking water distrib...Nitrite in drinking water is a potential health hazard and monitoring its concentrations in distributed water is of paramount importance. When monochloramine is used in secondary disinfection in drinking water distribution systems (DWDSs), nitrite is often formed by nitrification in the biofilm on the inner surface of distribution pipes. This article attempts to identify areas with a risk of increased nitrite concentrations as well as the main reasons leading to nitrite occurrence in a large urban DWDS in Finland using spatial inspection of obligatory monitoring data. Nitrification was found to occur throughout the study area, though nitrite was not increased everywhere. Instead, nitrite was increased close to the water treatment plants (WTPs) and was connected to fresh drinking water than stagnant drinking water. Temperature effects on nitrite concentrations were surprisingly insignificant, even though it is well known that nitrification reactions are affected by temperature. The temperature dependence of ammonium and total residual chlorine was more significant than the dependence of nitrite. The findings of this study emphasize the need to monitor nitrite concentrations close to WTPs.展开更多
Dianchi Lake is one of the most eutrophic lakes in China. In order to understand this eutrophication and to help control the pollution, this research investigated the spatial distribution of Kjeldahl nitrogen (K-N) an...Dianchi Lake is one of the most eutrophic lakes in China. In order to understand this eutrophication and to help control the pollution, this research investigated the spatial distribution of Kjeldahl nitrogen (K-N) and total phosphorus(TP) through analysis of bottom water and sediment (3 depths) samples collected at 118 sites around Dianchi Lake. The concentrations of K-N and TP for the lake bottom water in the Caohai part of the lake were much higher than those in the Waihai part, generally decreasing from north to south. In the sediments, the K-N concentration was higher in the Caohai part and the middle of the Waihai part. On the other hand, TP in the sediments was greater in the southern and western parts. Both K-N and TP had similar spatial distributions for the sediment samples of three different depths.Vertically, the K-N and TP concentration in the sediments decreased with an increase in depth. This was evidence that eutrophication and pollution of Dianchi Lake was becoming gradually more severe. Exterior factors including uncontrolled input of domestic and industrial effluents as well as non-point pollution around the lake were the main reasons for serious eutrophication; therefore, controlling these was the first step in reducing eutrophication of Dianchi Lake.展开更多
In the present study,we investigated a shift in the spatial distribution of wintering anchovy(Engraulis japonicus)and its relationship with water temperature,using data collected by bottom trawl surveys and remote sen...In the present study,we investigated a shift in the spatial distribution of wintering anchovy(Engraulis japonicus)and its relationship with water temperature,using data collected by bottom trawl surveys and remote sensing in the central and southern Yellow Sea,during 2000–2015.Our results indicate that the latitudinal distribution of wintering anchovy varied between years,but there was no consistent pattern in the direction of change(north or south).Wintering anchovy did not move northward with increasing water temperature.However,the latitudinal distribution of wintering anchovy correlated well with 10°C and 11°C isotherms.The results of both a one-step and a two-step generalized additive model indicated that water temperature was associated with both presence and biomass of wintering anchovy.This paper is the fi rst to systematically examine the relationship between anchovy distribution and water temperature using a variety of techniques.All the fi ndings confi rm the impact of water temperature on wintering anchovy distribution,which has important implications for the continued management of the anchovy resource and the enhancement of marine fi shery resources in the Yellow Sea,especially as the climate changes.However water temperature only partly explains the species distribution of anchovy,and stock characteristics also aff ect fi shery distribution.Therefore,other factors should be considered in future research.展开更多
Cotton is the main economically important crop in Xinjiang,China,but soil salinization and shortage of water and nutrients have restricted its production.A field experiment was carried out in the salinity-affected ari...Cotton is the main economically important crop in Xinjiang,China,but soil salinization and shortage of water and nutrients have restricted its production.A field experiment was carried out in the salinity-affected arid area of Northwest China from 2018 to 2019 to explore the effects of nitrogen and water regulation on physiological growth,yield,water and nitrogen use efficiencies,and economic benefit of cotton.The salinity levels were 7.7(SL)and 12.5 dS/m(SM).Drip irrigation was used with low,medium and adequate irrigation levels representing 60%,80%and 100%of cotton crop water demand,respectively,and three nitrogen applications,i.e.,206,275 and 343 kg/hm^(2),accounting for 75%,100%and 125%of local N application,respectively were used.The multi-objective optimization based on spatial analysis showed that,at SL salinity,water use efficiency(WUE),nitrogen use efficiency(NUE),economic benefit and yield simultaneously reached more than 85%of their maxima at 379.18-398.32 mm irrigation and 256.69-308.87 kg/hm^(2).At SM salinity,WUE,yield and economic benefit simultaneously reached more than 85%of their maxima when irrigation was 351.24-376.30 mm and nitrogen application was 230.18-289.89 kg/hm^(2).NUE,yield and economic benefit simultaneously reached their maxima at 428.01-337.72 mm irrigation,and nitrogen application range was 222.14-293.93 kg/hm^(2).The plants at SL salinity had 21.58%-46.59%higher WUE rates,14.91%-34.35%higher NUE rates and 20.71%-35.34%higher yields than those at SM salinity.The results are of great importance for the nutrient and water management in cotton field in the arid saline area.展开更多
Soil water content significantly influenced uptake and distribution of ^15N in both Newhall and Yamasitaka. The content of ^15N uptake in treated plants was less than that in controlled plants, under 20% soil water co...Soil water content significantly influenced uptake and distribution of ^15N in both Newhall and Yamasitaka. The content of ^15N uptake in treated plants was less than that in controlled plants, under 20% soil water content, ^15N was only taken up 16.02% by Newhall and 10.11% by Yamasitaka. The most ^15N was detained in root and old shoots under water stress. Protein concentration in two cultivars significantly decreased by water deficit stress, protein content of Newhall and Yamasitaka in controlled plants was 16.29 mg/g fresh weight and 15.89 mg/g fresh weight, but at 20% of water content, these were 9.60 mg/g fresh weight and 9.02 mg/g fresh weight. Water stress increased concentration of NH3-NH4^+, Arginine and Proline. Compared with control plants, concentrations of NH3-NH4^+ in both Newhall and Yamasitaka at 20% water content treatment increased 5.83 fold and 5.71 fold, Arginine increased 197% and 205%, and Proline increased 112% and 132%.展开更多
Water consumption is a key role in improving the efficiency and sustainability of water management in arid environments.In this study, we explored an approach based on meta-analysis, MODIS NDVI products, land-use spat...Water consumption is a key role in improving the efficiency and sustainability of water management in arid environments.In this study, we explored an approach based on meta-analysis, MODIS NDVI products, land-use spatial distribution, andsoil water physical parameters to gain insight into long-term and large scale distribution of land use and water consumption,maintain maximum Zhangye Oasis area according to Heihe River runoff, and suitable water resource management inZhangye Oasis. This approach was initiated in order to improve the efficiency of irrigation and water resource managementin arid regions. Results showed that Heihe River runoff can maintain a maximum Zhangye Oasis area of 22.49×104 hm2.During the 2000−2016 growing seasons, actual oasis water consumption ranged from 11.35×108 m3 to 13.73×108 m3, witha mean of (12.89 ± 0.60)×108 m3;if maintaining agricultural production and oasis stability was chosen, oasis water consumptionranged from 10.24×108 m3 to 12.37×108 m3, with a mean of (11.62 ± 0.53)×108 m3. From the perspective of waterresources management and ecosystem stability, it is necessary to reduce the area of Zhangye Oasis or choose the minimumwater consumption method to manage the oasis, to ease the pressure of water shortage and maintain stable and sustainabledevelopment of the Zhangye Oasis. These results can provide future practical guidance for water resource management ofcoordinated development of the economy and the environment in an arid area.展开更多
Soil holds the largest nitrogen(N)pool in terrestrial ecosystems,but estimates of soil N stock remain controversial. Storage and spatial distribution of soil N in China were estimated and the relationships between soi...Soil holds the largest nitrogen(N)pool in terrestrial ecosystems,but estimates of soil N stock remain controversial. Storage and spatial distribution of soil N in China were estimated and the relationships between soil N density and environmental factors were explored using data from China's Second National Soil Survey and field investigation in northwest China and the Tibetan Plateau.China's soil N storage at a depth of one meter was estimated at 7.4 Pg,with an average density of 0.84 kg m^(-2).Soil N density appeared to be high in southwest and northeast China and low in the middle areas of the country.Soil N density increased from the arid to semi-arid zone in northern China,and decreased from cold-temperate to tropical zone in the eastern part of the country.An analysis of general linear model suggested that climate and vegetation determined the spatial pattern of soil N density for natural vegetation,which explained 75.4% of the total variance.展开更多
We evaluated organic pollution in Bosten Lake, Xinjiang, China, by measuring the concentrations and distributions of organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs). Water and sediment...We evaluated organic pollution in Bosten Lake, Xinjiang, China, by measuring the concentrations and distributions of organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs). Water and sediment samples were collected from 19 sites 031-1319) in the lake for analysis. Our analytical results show that the concentrations of total OCPs in water ranges from 30.3 to 91.6 ng/L and the concentrations of PAHs ranges from undetectable (ND) to 368.7 ng/L. The concentrations of total OCPs in surface (i.e., lake bottom) sediment ranges from 6.9 to 16.7 ng/g and the concentrations of PAHs ranges from 25.2 to 491.0 ng/g. Hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethanes (DDTs) account for large proportions of the OCPs. Low α- to γ-HCH ratios in both water and sediment samples indicate possible contributions from both industrial products and lindane. DDTs in water are probably from historical input, whereas DDTs in sediments are from both historical and recent inputs. Moreover, DDT products in both water and sediments were from multiple sources in the northwestern part of the lake(B11, B12, B13, and B14). Fugacity ratios for DDT isomers (p,p'-DDE and p,p'-DDT) at these sites were generally higher than equilibrium values. These results suggest that the input from the Kaidu River and diffusion of DDTs from the sediment to the water are responsible for DDT pollution in the water. Lower-molecular-weight PAHs, which originate primarily from wood and coal combustion and petroleum sources, represent the major fraction of the PAHs in both water and sediment samples. Our findings indicate that OCPs and PAHs in Bosten Lake can be attributed primarily to human activities. A risk assessment of OCPs and PAHs in water and sediment from Bosten Lake, however, suggests that concentrations are not yet high enough to cause adverse biological effects on the aquatic ecosystem.展开更多
Soil salinity is the most important factor affecting vegetation distribution,and the secondary salinization has affected the development of oasis agriculture.In arid areas the spatial variation of soil moisture and sa...Soil salinity is the most important factor affecting vegetation distribution,and the secondary salinization has affected the development of oasis agriculture.In arid areas the spatial variation of soil moisture and sa lt content is marked-ly affected by groundwater,irratio nal irrigation in artificial oasis.By analyzing the soil moisture,salt content and groundwa-ter table in different areas of old oasis,new oasis and desert in Fukang Oa sis,it is shown that topography and l and use are main factors affecting the change of groundwater table,the redistribution of soil moisture and salt cont ent.When undis-turbed by human,the groundwater tab le rises from mountain to belt of grou nd water spillage,the groundwater t able rises mightily in plain because of the artificial irrigation,and the secondary salinization of soil is very seriou s.In oasis the ground-water table raises compared with that in the natural desert at the same latitude.In old oasis of upper reaches o f river salt has not been concentrated too much in rhizosphere because this area is the belt of groundwater drainage,soil t exture is coarse,the groundwater table is very low,and the salt in soil is drained i nto the groundwater.The new oasis has been the areas of salt accumulation becau se of the artificial irrigation,the salt content in soil is higher than th at in old oasis,so some cultivated fields here had to be thrown out because of the serious s econdary salinization.展开更多
Microplastic pollution has become an environmental issue of great concern owing to the persistence of microplastics and their potential adverse effects on biota.The Yangtze River is the longest river in China and the ...Microplastic pollution has become an environmental issue of great concern owing to the persistence of microplastics and their potential adverse effects on biota.The Yangtze River is the longest river in China and the third-longest river in the world,and the microplastics in this river will affect the health of a large population living along with it.To ensure the survival safety of people,it is essential to plan ahead and investigate in advance in order to understand the microplastic pollution in the river and work out countermeasures.This paper reviews the literature concerning the microplastic pollution in the Yangtze River basin and analyzes the abundance,shapes,colors,and composition of microplastics in the water bodies and sediments in the trunk stream and main lakes of the Yangtze River.The results are as follows.Compared to other river basins in China and abroad,the microplastics in the Yangtze River basin have a moderate abundance and high spatial heterogeneity.Owing to the barrier effect of the Three Gorges Dam on microplastics,the abundance of microplastics in the Three Gorges Reservoir is generally an order of magnitude higher than that in other sections of the river.Most microplastics in the water bodies and sediments are less than 1 mm in size and are transparent and colorful.In terms of shapes,they are dominated by fibers,followed by fragments and films.In terms of composition,the microplastics in the source region of the Yangtze River are mainly composed of nylon and polyethylene,while the microplastics in the surface water from the lower reaches of the Jinsha River to the Yangtze River estuary are dominated by polypropylene and polyethylene.The microplastics are primarily derived from the secondary microplastics in the environment,and relatively intensive human activities increase the abundance of microplastics.These results serve as bases for understanding and preventing microplastic pollution in the Yangtze River.展开更多
The concentration of total nitrogen (TN), total phosphorus (TP) and organic material (OM) at sixty grid division in Lake Chaohu basin around the lake was studied, in order to investigate their spatial distribution cha...The concentration of total nitrogen (TN), total phosphorus (TP) and organic material (OM) at sixty grid division in Lake Chaohu basin around the lake was studied, in order to investigate their spatial distribution characteristics. The results showed that the average concentrations of TN, TP and OM were 1027 mg/kg, 483 mg/kg, 1.95%, and their concentrations ranged from 253 mg/kg to 2273 mg/kg, 223 mg/kg to 1173 mg/kg and 0.291% to 5.48%, respectively. The high concentration areas were located at the basins of Tuogao river and Zhao river while the low concentration areas were located at basins of Pai river, Nanfei river and Dianpu river. The concentrations of TN and OM were higher in East part than in West part. The spatial distribution of TN, TP and OM concentrations of the surface soil showed inconsistent with those of the water quality of the inflow rivers and the lake and the TN and TP of lake sediment studied.展开更多
There are several models that monitor movement of nitrogen in the soil. Most of these models have not been widely used in southern Africa because of sophisticated equipment required to collect data and the data needed...There are several models that monitor movement of nitrogen in the soil. Most of these models have not been widely used in southern Africa because of sophisticated equipment required to collect data and the data needed to run the model are intensive. Nitrogen Distribution Model (NDM) has been developed to ensure that it responds to increasing need of managing nitrogen in agricultural systems characterized by smallholder farmers who do not have adequate resources to collect intensive data for modeling. NDM has parameters that are explicit and mostly intuitive and maintains good balance of simplicity and robustness. With the nature of smallholder farming in Malawi where over 85% of population are rural-based smallholder farmers, the model has also be designed so that it can acts as database to keep track of farmers and farms so that were given farm-specific nitrogen and water management advice.展开更多
Seawater flows towards the inlands along with the rivers and canals, through the process of infiltration and leaks in the ground water characterized by high concentrations of soluble salts. High salinity concentration...Seawater flows towards the inlands along with the rivers and canals, through the process of infiltration and leaks in the ground water characterized by high concentrations of soluble salts. High salinity concentrations can make groundwater unsuitable for public consumption and surface water unsuitable for irrigation and agricultural activities. This study envisages the fluctuations of ground and surface water quality of Bentota area in the presence of seawater intrusion. The temporal and spatial variations of eleven water parameters were monitored by collecting the water samples during one year period. Spatial distributions were assessed by applying the Inverse distance weighted (IDW) interpolation method in Arc GIS 10.5 software. Water quality is assessed on the integration of all parameters in terms of an index based on the World Health Organization (WHO) standards. The significant linear relationship between the considered parameters of surface water (SW) and groundwater (GW) were identified applying correlation analysis using SPSS software. All parameters of surface water were above the permissible limits of WHO standards. Surface water quality index values with respect to 60% of canals show very poor quality (>1 250) of surface water indicating their unsuitability for irrigation activities. Those surface water bodies indicated very highly saline conditions during dry months. The spatial distribution of ground water quality index with respect to the highest parameter values of each sampling location indicates that 52.2% of total land extent of Bentota Divisional Secretariat Division (DSD) has good quality of ground water which is suitable for drinking. Its 47.2% of total land extent has poor quality of ground water for drinking purpose and less than 0.5% of the area consists of excellent or very poor quality of ground water in each. This study helps to manage coastal aquifers by understanding the extreme water quality conditions and coastal salinity.展开更多
Sagardari union is facing groundwater crisis because of contaminations from agriculture and urban sewage,which bring a considerable change in water quality.In view of this,hydro-chemical analyses were undertaken on 35...Sagardari union is facing groundwater crisis because of contaminations from agriculture and urban sewage,which bring a considerable change in water quality.In view of this,hydro-chemical analyses were undertaken on 35 groundwater samples and the following hydro-geochemical parameters,pH,total dissolved solids(TDS),total hardness(TH),electrical conductivity(EC),cations and anions,were analyzed.From the analytical results,it is found that pH value was lower than WHO drinking water standard and the middledownstream portions of the investigation region show higher EC.The piper plot indicates that the groundwater in Sagardari falls in the categories of NaClHCO3 hydro-chemical facies.Higher TH in groundwater was detected,but still in an acceptable range.In addition,salinity and arsenic ratio are higher and moderately higher,respectively.The spatial distribution of Groundwater Quality Index(GWQI)was determined by geo-statistical modelling of Sagardari union.The study provides information and supports the administration which to make better groundwater utilization and quality control in the Sagardari union.展开更多
The paper presents the results of a comprehensive monitoring of the polygon: "Odessa Region, north-western part of the Black Sea" for the period 2009-2011. It is shown that most of the copper and nickel is brought ...The paper presents the results of a comprehensive monitoring of the polygon: "Odessa Region, north-western part of the Black Sea" for the period 2009-2011. It is shown that most of the copper and nickel is brought into the sea from the catchment area, and zinc and cadmium are mainly of the autochthonous origin. It is found that in 2010, after heavy rains, the area of bottom sediments contaminated by copper and nickel was increased. The main source of copper in the sea is vast vineyards.展开更多
基金supported by the National Science and Technology Major Project of Water Pollution Control and Treatment(Grants No.2014ZX07405002,2012ZX07506007,2012ZX07506006,and 2012ZX07506002)the Natural Science Foundation of the Anhui Higher Education Institutions of China(Grant No.KJ2016A868)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘With a focus on the difficulty of quantitatively describing the degree of nonuniformity of temporal and spatial distributions of water resources, quantitative research was carried out on the temporal and spatial distribution characteristics of water resources in Guangdong Province from 1956 to 2000 based on a cloud model. The spatial variation of the temporal distribution characteristics and the temporal variation of the spatial distribution characteristics were both analyzed. In addition, the relationships between the numerical characteristics of the cloud model of temporal and spatial distributions of water resources and precipitation were also studied. The results show that, using a cloud model, it is possible to intuitively describe the temporal and spatial distribution characteristics of water resources in cloud images. Water resources in Guangdong Province and their temporal and spatial distribution characteristics are differentiated by their geographic locations. Downstream and coastal areas have a larger amount of water resources with greater uniformity and stronger stability in terms of temporal distribution. Regions with more precipitation possess larger amounts of water resources, and years with more precipitation show greater nonuniformity in the spatial distribution of water resources. The correlation between the nonuniformity of the temporal distribution and local precipitation is small, and no correlation is found between the stability of the nonuniformity of the temporal and spatial distributions of water resources and precipitation. The amount of water resources in Guangdong Province shows an increasing trend from 1956 to 2000, the nonuniformity of the spatial distribution of water resources declines, and the stability of the nonuniformity of the spatial distribution of water resources is enhanced.
基金funded by the National Basic Research Program of China(2009CB825101)the National Natural Science Foundation of China(41071139)
文摘With the classical statistical and geostatistical methods, the study of the spatial distribution and its in- fluence factors of soil water, salinity and organic matter was carried out for 0-70 cm soil layers in Manas River watershed. The results showed that the soil moisture data from all soil layers exhibited a normal distribution, with average values of 14.08%-21.55%. Geostatistical analysis revealed that the content of soil moisture had a moder- ate spatial autocorrelation with the ratios of nugget/sill ranging from 0.500 to 0.718, which implies that the spatial pattern of soil moisture is influenced by the combined effects of structural factors and random factors. Remarkable spatial distributions with stripped and mottled features were found for soil moisture in all different soil layers. The landform and crop planting had a relatively big influence on the spatial distribution of soil moisture; total soil salinity was high in east but low in west, and non-salinized soil and lightly salinized soil appeared at the northwest and southwest of the study area. Under the effect of reservoir leakage, the heavily salinized soils are widely distributed in the middle of the study area. The areas of the non-salinized and lightly salinized soils decreased gradually with soil depth increment, which is contrary to the case for saline soils that reached a maximum of 245.67 km2 at the layer of 50-70 cm. The types of soil salinization in Manas River watershed were classified into four classes: the sulfate, chloride-sulfate, sulfate-chloride and chloride. The sulfate salinized soil is most widely distributed in the surface layer. The areas of chloride-sulfate, sulfate-chloride, and chloride salinized soils increased gradually along with the increment of soil depth; the variation range of the average values of soil organic matter content was be- tween 7.48%-11.33%. The ratios of nugget/sill reduced gradually from 0.698 to 0.299 with soil depth increment, which shows that the content of soil organic matter has a moderate spatial autocorrelation. The soil organic matter in all soil layers met normal distribution after logarithmic transformation. The spatial distribution patterns of soil or- ganic matter and soil moisture were similar; the areas with high organic matter contents were mainly distributed in the south of the study area, with the lowest contents in the middle.
基金the National Science Foundation of China under Contract Nos.40376009 and 40676011.
文摘The data from the Southern Ocean observations of World Ocean Circulation Experiment (WOCE) are used for analysis and illustration of the features and spatial distributions of Circumpolar Deep Water (CDW) in the southern Indian Ocean. It is learnt from the comparison among the vertical distributions of temperature/ salinity/oxygen along the 30°E, 90°E and 145°E sections respectively that some different features of CDW and the fronts can be found at those longitudes, and those differences can be attributed to the zonal transoceanic flow and the merizonal movement in the Circumpolar Deep Water. In fact, the zonal transoceanic flow is the main dynamic factor for the water exchange between the Pacific Ocean and the /ndian Ocean or between the Atlantic Ocean and the Indian Ocean, and for the effects on the spatial distributions of the physical properties in CDW.
基金Supported by Scientific Research Foundation of Binzhou University(BZXYG1817)Experimental Technology Project of Binzhou University(BZXYSYXM201706)
文摘Taking the typical coastal wetlands in the Yellow River Delta as the research object,( i) three parallel strips A1,A2 and A3 were set up along the vertical coastline in the newborn wetland at 60 km south of the Dongwenliu Management Station in the Yellow River Delta Nature Reserve.( ii) Sample plots B( Phragmites communis area),C( Suaeda glauca area),and D( Tamarix chinensis area) were set up near the field ecological station of the coastal wetlands.Through collecting sediment samples and measuring nitrogen and phosphorus contents,the spatial distribution characteristics of nitrogen and phosphorus in sediments of coastal wetlands were studied.Following results were obtained.( i) The concentration of TN in the 0-20 cm surface sediments of the coastal wetlands in the Yellow River Delta was in the range of130-695 mg/kg,the concentration of TP was in the range of 589-778 mg/kg,and the average content of TN and TP was 372.18 and 660.82 mg/kg respectively.( ii) From the remote coastal area of the Yellow River to the near coastal area,the horizontal distribution of TN in the sediments was different at each level,and the TN content in the surface sediments gradually decreased; the content of TP generally increased.( iii) At the profile level,the content of TN and TP generally showed a trend of decreasing gradually from the surface layer and tending to be stable,and the peak appeared at the outermost layer.( iv) In the sediments under different vegetation cover,TN was more evenly distributed on each profile,and the distribution of TP on each profile was different.TN showed the largest distribution in the 0-20 cm surface sediments in the T.chinensis area,while TP had the largest distribution in the 80-100 cm bottom sediments in the T.chinensis area.
基金foundation of Maa-ja vesitekniikan tuki ry.,for financing the research.
文摘Nitrite in drinking water is a potential health hazard and monitoring its concentrations in distributed water is of paramount importance. When monochloramine is used in secondary disinfection in drinking water distribution systems (DWDSs), nitrite is often formed by nitrification in the biofilm on the inner surface of distribution pipes. This article attempts to identify areas with a risk of increased nitrite concentrations as well as the main reasons leading to nitrite occurrence in a large urban DWDS in Finland using spatial inspection of obligatory monitoring data. Nitrification was found to occur throughout the study area, though nitrite was not increased everywhere. Instead, nitrite was increased close to the water treatment plants (WTPs) and was connected to fresh drinking water than stagnant drinking water. Temperature effects on nitrite concentrations were surprisingly insignificant, even though it is well known that nitrification reactions are affected by temperature. The temperature dependence of ammonium and total residual chlorine was more significant than the dependence of nitrite. The findings of this study emphasize the need to monitor nitrite concentrations close to WTPs.
文摘Dianchi Lake is one of the most eutrophic lakes in China. In order to understand this eutrophication and to help control the pollution, this research investigated the spatial distribution of Kjeldahl nitrogen (K-N) and total phosphorus(TP) through analysis of bottom water and sediment (3 depths) samples collected at 118 sites around Dianchi Lake. The concentrations of K-N and TP for the lake bottom water in the Caohai part of the lake were much higher than those in the Waihai part, generally decreasing from north to south. In the sediments, the K-N concentration was higher in the Caohai part and the middle of the Waihai part. On the other hand, TP in the sediments was greater in the southern and western parts. Both K-N and TP had similar spatial distributions for the sediment samples of three different depths.Vertically, the K-N and TP concentration in the sediments decreased with an increase in depth. This was evidence that eutrophication and pollution of Dianchi Lake was becoming gradually more severe. Exterior factors including uncontrolled input of domestic and industrial effluents as well as non-point pollution around the lake were the main reasons for serious eutrophication; therefore, controlling these was the first step in reducing eutrophication of Dianchi Lake.
基金Supported by the National Natural Science Foundation of China(No.41506162)the National Special Research Fund for Non-Profit Sector(Agriculture)(No.201303050)
文摘In the present study,we investigated a shift in the spatial distribution of wintering anchovy(Engraulis japonicus)and its relationship with water temperature,using data collected by bottom trawl surveys and remote sensing in the central and southern Yellow Sea,during 2000–2015.Our results indicate that the latitudinal distribution of wintering anchovy varied between years,but there was no consistent pattern in the direction of change(north or south).Wintering anchovy did not move northward with increasing water temperature.However,the latitudinal distribution of wintering anchovy correlated well with 10°C and 11°C isotherms.The results of both a one-step and a two-step generalized additive model indicated that water temperature was associated with both presence and biomass of wintering anchovy.This paper is the fi rst to systematically examine the relationship between anchovy distribution and water temperature using a variety of techniques.All the fi ndings confi rm the impact of water temperature on wintering anchovy distribution,which has important implications for the continued management of the anchovy resource and the enhancement of marine fi shery resources in the Yellow Sea,especially as the climate changes.However water temperature only partly explains the species distribution of anchovy,and stock characteristics also aff ect fi shery distribution.Therefore,other factors should be considered in future research.
基金The study was supported by the National Natural Science Foundation of China(U1803244,51669029,2020DB01)the National Key Research and Development Program of China(2016YFC0501406).
文摘Cotton is the main economically important crop in Xinjiang,China,but soil salinization and shortage of water and nutrients have restricted its production.A field experiment was carried out in the salinity-affected arid area of Northwest China from 2018 to 2019 to explore the effects of nitrogen and water regulation on physiological growth,yield,water and nitrogen use efficiencies,and economic benefit of cotton.The salinity levels were 7.7(SL)and 12.5 dS/m(SM).Drip irrigation was used with low,medium and adequate irrigation levels representing 60%,80%and 100%of cotton crop water demand,respectively,and three nitrogen applications,i.e.,206,275 and 343 kg/hm^(2),accounting for 75%,100%and 125%of local N application,respectively were used.The multi-objective optimization based on spatial analysis showed that,at SL salinity,water use efficiency(WUE),nitrogen use efficiency(NUE),economic benefit and yield simultaneously reached more than 85%of their maxima at 379.18-398.32 mm irrigation and 256.69-308.87 kg/hm^(2).At SM salinity,WUE,yield and economic benefit simultaneously reached more than 85%of their maxima when irrigation was 351.24-376.30 mm and nitrogen application was 230.18-289.89 kg/hm^(2).NUE,yield and economic benefit simultaneously reached their maxima at 428.01-337.72 mm irrigation,and nitrogen application range was 222.14-293.93 kg/hm^(2).The plants at SL salinity had 21.58%-46.59%higher WUE rates,14.91%-34.35%higher NUE rates and 20.71%-35.34%higher yields than those at SM salinity.The results are of great importance for the nutrient and water management in cotton field in the arid saline area.
基金Acknowledgment The authors acknowledge the financial support of the CARS-3 (China Agricultural Research System) and National Natural Science Foundation of China (31071763) and suggestions of Dr. C.J. Lovatt,Professor of Plant Physiology, University of California, Riverside.
文摘Soil water content significantly influenced uptake and distribution of ^15N in both Newhall and Yamasitaka. The content of ^15N uptake in treated plants was less than that in controlled plants, under 20% soil water content, ^15N was only taken up 16.02% by Newhall and 10.11% by Yamasitaka. The most ^15N was detained in root and old shoots under water stress. Protein concentration in two cultivars significantly decreased by water deficit stress, protein content of Newhall and Yamasitaka in controlled plants was 16.29 mg/g fresh weight and 15.89 mg/g fresh weight, but at 20% of water content, these were 9.60 mg/g fresh weight and 9.02 mg/g fresh weight. Water stress increased concentration of NH3-NH4^+, Arginine and Proline. Compared with control plants, concentrations of NH3-NH4^+ in both Newhall and Yamasitaka at 20% water content treatment increased 5.83 fold and 5.71 fold, Arginine increased 197% and 205%, and Proline increased 112% and 132%.
基金This study was funded under the National Natural Science Foundation of China project(91425302).
文摘Water consumption is a key role in improving the efficiency and sustainability of water management in arid environments.In this study, we explored an approach based on meta-analysis, MODIS NDVI products, land-use spatial distribution, andsoil water physical parameters to gain insight into long-term and large scale distribution of land use and water consumption,maintain maximum Zhangye Oasis area according to Heihe River runoff, and suitable water resource management inZhangye Oasis. This approach was initiated in order to improve the efficiency of irrigation and water resource managementin arid regions. Results showed that Heihe River runoff can maintain a maximum Zhangye Oasis area of 22.49×104 hm2.During the 2000−2016 growing seasons, actual oasis water consumption ranged from 11.35×108 m3 to 13.73×108 m3, witha mean of (12.89 ± 0.60)×108 m3;if maintaining agricultural production and oasis stability was chosen, oasis water consumptionranged from 10.24×108 m3 to 12.37×108 m3, with a mean of (11.62 ± 0.53)×108 m3. From the perspective of waterresources management and ecosystem stability, it is necessary to reduce the area of Zhangye Oasis or choose the minimumwater consumption method to manage the oasis, to ease the pressure of water shortage and maintain stable and sustainabledevelopment of the Zhangye Oasis. These results can provide future practical guidance for water resource management ofcoordinated development of the economy and the environment in an arid area.
基金Project supported by the National Natural Science Foundation of China(Nos.40024101,40228001,and 90211016).
文摘Soil holds the largest nitrogen(N)pool in terrestrial ecosystems,but estimates of soil N stock remain controversial. Storage and spatial distribution of soil N in China were estimated and the relationships between soil N density and environmental factors were explored using data from China's Second National Soil Survey and field investigation in northwest China and the Tibetan Plateau.China's soil N storage at a depth of one meter was estimated at 7.4 Pg,with an average density of 0.84 kg m^(-2).Soil N density appeared to be high in southwest and northeast China and low in the middle areas of the country.Soil N density increased from the arid to semi-arid zone in northern China,and decreased from cold-temperate to tropical zone in the eastern part of the country.An analysis of general linear model suggested that climate and vegetation determined the spatial pattern of soil N density for natural vegetation,which explained 75.4% of the total variance.
基金funded by the National Natural Science Foundation of China(4147117341671200+1 种基金U1603242)the Specific Scientific Research Fund from the Ministry of Environmental Protection of the People’s Republic of China(201309041)
文摘We evaluated organic pollution in Bosten Lake, Xinjiang, China, by measuring the concentrations and distributions of organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs). Water and sediment samples were collected from 19 sites 031-1319) in the lake for analysis. Our analytical results show that the concentrations of total OCPs in water ranges from 30.3 to 91.6 ng/L and the concentrations of PAHs ranges from undetectable (ND) to 368.7 ng/L. The concentrations of total OCPs in surface (i.e., lake bottom) sediment ranges from 6.9 to 16.7 ng/g and the concentrations of PAHs ranges from 25.2 to 491.0 ng/g. Hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethanes (DDTs) account for large proportions of the OCPs. Low α- to γ-HCH ratios in both water and sediment samples indicate possible contributions from both industrial products and lindane. DDTs in water are probably from historical input, whereas DDTs in sediments are from both historical and recent inputs. Moreover, DDT products in both water and sediments were from multiple sources in the northwestern part of the lake(B11, B12, B13, and B14). Fugacity ratios for DDT isomers (p,p'-DDE and p,p'-DDT) at these sites were generally higher than equilibrium values. These results suggest that the input from the Kaidu River and diffusion of DDTs from the sediment to the water are responsible for DDT pollution in the water. Lower-molecular-weight PAHs, which originate primarily from wood and coal combustion and petroleum sources, represent the major fraction of the PAHs in both water and sediment samples. Our findings indicate that OCPs and PAHs in Bosten Lake can be attributed primarily to human activities. A risk assessment of OCPs and PAHs in water and sediment from Bosten Lake, however, suggests that concentrations are not yet high enough to cause adverse biological effects on the aquatic ecosystem.
文摘Soil salinity is the most important factor affecting vegetation distribution,and the secondary salinization has affected the development of oasis agriculture.In arid areas the spatial variation of soil moisture and sa lt content is marked-ly affected by groundwater,irratio nal irrigation in artificial oasis.By analyzing the soil moisture,salt content and groundwa-ter table in different areas of old oasis,new oasis and desert in Fukang Oa sis,it is shown that topography and l and use are main factors affecting the change of groundwater table,the redistribution of soil moisture and salt cont ent.When undis-turbed by human,the groundwater tab le rises from mountain to belt of grou nd water spillage,the groundwater t able rises mightily in plain because of the artificial irrigation,and the secondary salinization of soil is very seriou s.In oasis the ground-water table raises compared with that in the natural desert at the same latitude.In old oasis of upper reaches o f river salt has not been concentrated too much in rhizosphere because this area is the belt of groundwater drainage,soil t exture is coarse,the groundwater table is very low,and the salt in soil is drained i nto the groundwater.The new oasis has been the areas of salt accumulation becau se of the artificial irrigation,the salt content in soil is higher than th at in old oasis,so some cultivated fields here had to be thrown out because of the serious s econdary salinization.
基金supported by the engineering and projects of the China Geological Survey(0602,DD20190824,DD20221734)。
文摘Microplastic pollution has become an environmental issue of great concern owing to the persistence of microplastics and their potential adverse effects on biota.The Yangtze River is the longest river in China and the third-longest river in the world,and the microplastics in this river will affect the health of a large population living along with it.To ensure the survival safety of people,it is essential to plan ahead and investigate in advance in order to understand the microplastic pollution in the river and work out countermeasures.This paper reviews the literature concerning the microplastic pollution in the Yangtze River basin and analyzes the abundance,shapes,colors,and composition of microplastics in the water bodies and sediments in the trunk stream and main lakes of the Yangtze River.The results are as follows.Compared to other river basins in China and abroad,the microplastics in the Yangtze River basin have a moderate abundance and high spatial heterogeneity.Owing to the barrier effect of the Three Gorges Dam on microplastics,the abundance of microplastics in the Three Gorges Reservoir is generally an order of magnitude higher than that in other sections of the river.Most microplastics in the water bodies and sediments are less than 1 mm in size and are transparent and colorful.In terms of shapes,they are dominated by fibers,followed by fragments and films.In terms of composition,the microplastics in the source region of the Yangtze River are mainly composed of nylon and polyethylene,while the microplastics in the surface water from the lower reaches of the Jinsha River to the Yangtze River estuary are dominated by polypropylene and polyethylene.The microplastics are primarily derived from the secondary microplastics in the environment,and relatively intensive human activities increase the abundance of microplastics.These results serve as bases for understanding and preventing microplastic pollution in the Yangtze River.
文摘The concentration of total nitrogen (TN), total phosphorus (TP) and organic material (OM) at sixty grid division in Lake Chaohu basin around the lake was studied, in order to investigate their spatial distribution characteristics. The results showed that the average concentrations of TN, TP and OM were 1027 mg/kg, 483 mg/kg, 1.95%, and their concentrations ranged from 253 mg/kg to 2273 mg/kg, 223 mg/kg to 1173 mg/kg and 0.291% to 5.48%, respectively. The high concentration areas were located at the basins of Tuogao river and Zhao river while the low concentration areas were located at basins of Pai river, Nanfei river and Dianpu river. The concentrations of TN and OM were higher in East part than in West part. The spatial distribution of TN, TP and OM concentrations of the surface soil showed inconsistent with those of the water quality of the inflow rivers and the lake and the TN and TP of lake sediment studied.
文摘There are several models that monitor movement of nitrogen in the soil. Most of these models have not been widely used in southern Africa because of sophisticated equipment required to collect data and the data needed to run the model are intensive. Nitrogen Distribution Model (NDM) has been developed to ensure that it responds to increasing need of managing nitrogen in agricultural systems characterized by smallholder farmers who do not have adequate resources to collect intensive data for modeling. NDM has parameters that are explicit and mostly intuitive and maintains good balance of simplicity and robustness. With the nature of smallholder farming in Malawi where over 85% of population are rural-based smallholder farmers, the model has also be designed so that it can acts as database to keep track of farmers and farms so that were given farm-specific nitrogen and water management advice.
文摘Seawater flows towards the inlands along with the rivers and canals, through the process of infiltration and leaks in the ground water characterized by high concentrations of soluble salts. High salinity concentrations can make groundwater unsuitable for public consumption and surface water unsuitable for irrigation and agricultural activities. This study envisages the fluctuations of ground and surface water quality of Bentota area in the presence of seawater intrusion. The temporal and spatial variations of eleven water parameters were monitored by collecting the water samples during one year period. Spatial distributions were assessed by applying the Inverse distance weighted (IDW) interpolation method in Arc GIS 10.5 software. Water quality is assessed on the integration of all parameters in terms of an index based on the World Health Organization (WHO) standards. The significant linear relationship between the considered parameters of surface water (SW) and groundwater (GW) were identified applying correlation analysis using SPSS software. All parameters of surface water were above the permissible limits of WHO standards. Surface water quality index values with respect to 60% of canals show very poor quality (>1 250) of surface water indicating their unsuitability for irrigation activities. Those surface water bodies indicated very highly saline conditions during dry months. The spatial distribution of ground water quality index with respect to the highest parameter values of each sampling location indicates that 52.2% of total land extent of Bentota Divisional Secretariat Division (DSD) has good quality of ground water which is suitable for drinking. Its 47.2% of total land extent has poor quality of ground water for drinking purpose and less than 0.5% of the area consists of excellent or very poor quality of ground water in each. This study helps to manage coastal aquifers by understanding the extreme water quality conditions and coastal salinity.
文摘Sagardari union is facing groundwater crisis because of contaminations from agriculture and urban sewage,which bring a considerable change in water quality.In view of this,hydro-chemical analyses were undertaken on 35 groundwater samples and the following hydro-geochemical parameters,pH,total dissolved solids(TDS),total hardness(TH),electrical conductivity(EC),cations and anions,were analyzed.From the analytical results,it is found that pH value was lower than WHO drinking water standard and the middledownstream portions of the investigation region show higher EC.The piper plot indicates that the groundwater in Sagardari falls in the categories of NaClHCO3 hydro-chemical facies.Higher TH in groundwater was detected,but still in an acceptable range.In addition,salinity and arsenic ratio are higher and moderately higher,respectively.The spatial distribution of Groundwater Quality Index(GWQI)was determined by geo-statistical modelling of Sagardari union.The study provides information and supports the administration which to make better groundwater utilization and quality control in the Sagardari union.
文摘The paper presents the results of a comprehensive monitoring of the polygon: "Odessa Region, north-western part of the Black Sea" for the period 2009-2011. It is shown that most of the copper and nickel is brought into the sea from the catchment area, and zinc and cadmium are mainly of the autochthonous origin. It is found that in 2010, after heavy rains, the area of bottom sediments contaminated by copper and nickel was increased. The main source of copper in the sea is vast vineyards.