The study of sulfur hexafluoride(SF6) discharge is vital for its application in gas-insulated equipment. Direct current partial discharge(PD) may cause SF6 decomposition, and the decomposed products of SF6, such as F ...The study of sulfur hexafluoride(SF6) discharge is vital for its application in gas-insulated equipment. Direct current partial discharge(PD) may cause SF6 decomposition, and the decomposed products of SF6, such as F atoms, play a dominant role in the breakdown of insulation systems. In this study, the PD caused by metal protrusion defects is simulated by a needle-plate electrode using pulsed high voltage in SF6/Ar mixtures. The spatial and temporal characteristics of SF6/Ar plasma are analyzed by measuring the emission spectra of F and Ar atoms, which are important for understanding the characteristics of PD. The spatial resolved results show that both F and Ar atom spectral intensities increase first from the plate anode to the needle and then decrease under the conditions of a background pressure of400 Pa, peak voltage of-1000 V, frequency of 2 kHz, pulse width of 60 μs, and electrode gap of 5-9 mm. However, the distribution characteristics of F and Ar are significantly different. The temporal distribution results show that the spectral intensity of Ar decreasesfirst and then increases slowly, while the spectral intensity of F increases slowly for the duration of the pulsed discharge at the electrode gap of 5 mm and the pulse width of40-80 μs.展开更多
An SF6/CF4 cyclic reactive-ion etching (RIE) method is proposed to suppress the surface roughness and to opti- mize the morphology of Ge fin, aiming at the fabrication of superior Ge FinFETs for future CMOS technolo...An SF6/CF4 cyclic reactive-ion etching (RIE) method is proposed to suppress the surface roughness and to opti- mize the morphology of Ge fin, aiming at the fabrication of superior Ge FinFETs for future CMOS technologies. The surface roughness of the Ge after RIE can be sufficiently reduced by introducing SF6-O2 etching steps into the CF4-O2 etching process, while maintaining a relatively large ratio of vertical etching over horizontal etching of the Ge. As a result, an optimized rms roughness of 0.9nm is achieved for Ge surfaces after the SF6/CF4 cyclic etching with a ratio of greater than four for vertical etching over horizontal etching of the Ge, by using a proportion of 60% for SF6-O2 etching steps.展开更多
This paper describes a wood-wood spatial joining system adapted to digital fabrication which has been designated the“Spatial Masterkey”.The wood stereotomy of the joints between the different pieces that make up thi...This paper describes a wood-wood spatial joining system adapted to digital fabrication which has been designated the“Spatial Masterkey”.The wood stereotomy of the joints between the different pieces that make up this joining system is inspired by a three-dimensional puzzle called“snowflake”.The production process used in the masterkey system can be carried out using only a 3-axis CNC milling machine—a relatively affordable and easily accessible tool.By using digital manufacturing for the execution of wood-wood joints,several benefits are obtained including faster machining and greater cutting precision and uniformity in the products produced.These advantages make this joining system both economically competitive and environmentally friendly.Additionally,the versatility of this joining system means that its configuration can be adapted to a wide range of casuistry of encounters between members,which means that it can be used for a number of spatial assemblies.This includes,but is not limited to,the spatial module presented in this document.展开更多
基金supported by National Natural Science Foundation of China (Nos. 11605023, 11805028, and 11705020)the National Key R&D Program of China (No. 2017YFE0301300)+1 种基金the China Postdoctoral Science Foundation (Nos. 2017T100172 and 2016M591423)the Fundamental Research Funds for the Central Universities (Nos. DUT17RC(4)53 and DUT18LK38)
文摘The study of sulfur hexafluoride(SF6) discharge is vital for its application in gas-insulated equipment. Direct current partial discharge(PD) may cause SF6 decomposition, and the decomposed products of SF6, such as F atoms, play a dominant role in the breakdown of insulation systems. In this study, the PD caused by metal protrusion defects is simulated by a needle-plate electrode using pulsed high voltage in SF6/Ar mixtures. The spatial and temporal characteristics of SF6/Ar plasma are analyzed by measuring the emission spectra of F and Ar atoms, which are important for understanding the characteristics of PD. The spatial resolved results show that both F and Ar atom spectral intensities increase first from the plate anode to the needle and then decrease under the conditions of a background pressure of400 Pa, peak voltage of-1000 V, frequency of 2 kHz, pulse width of 60 μs, and electrode gap of 5-9 mm. However, the distribution characteristics of F and Ar are significantly different. The temporal distribution results show that the spectral intensity of Ar decreasesfirst and then increases slowly, while the spectral intensity of F increases slowly for the duration of the pulsed discharge at the electrode gap of 5 mm and the pulse width of40-80 μs.
基金Supported by the National Basic Research Program of China under Grant No 2011CBA00607the National Natural Science Foundation of China under Grant No 61376097+1 种基金the Zhejiang Provincial Natural Science Foundation of China under Grant No LR14F040001Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No20130091110025
文摘An SF6/CF4 cyclic reactive-ion etching (RIE) method is proposed to suppress the surface roughness and to opti- mize the morphology of Ge fin, aiming at the fabrication of superior Ge FinFETs for future CMOS technologies. The surface roughness of the Ge after RIE can be sufficiently reduced by introducing SF6-O2 etching steps into the CF4-O2 etching process, while maintaining a relatively large ratio of vertical etching over horizontal etching of the Ge. As a result, an optimized rms roughness of 0.9nm is achieved for Ge surfaces after the SF6/CF4 cyclic etching with a ratio of greater than four for vertical etching over horizontal etching of the Ge, by using a proportion of 60% for SF6-O2 etching steps.
基金The authors received financial support from the Department of Architecture of the University of the Basque Country UPV/EHU for the translation of this article.
文摘This paper describes a wood-wood spatial joining system adapted to digital fabrication which has been designated the“Spatial Masterkey”.The wood stereotomy of the joints between the different pieces that make up this joining system is inspired by a three-dimensional puzzle called“snowflake”.The production process used in the masterkey system can be carried out using only a 3-axis CNC milling machine—a relatively affordable and easily accessible tool.By using digital manufacturing for the execution of wood-wood joints,several benefits are obtained including faster machining and greater cutting precision and uniformity in the products produced.These advantages make this joining system both economically competitive and environmentally friendly.Additionally,the versatility of this joining system means that its configuration can be adapted to a wide range of casuistry of encounters between members,which means that it can be used for a number of spatial assemblies.This includes,but is not limited to,the spatial module presented in this document.