In order to improve the detection accuracy of Doppler asymmetric spatial heterodyne(DASH)interferometer in harsh temperatures,an opto-mechanical-thermal integration analysis is carried out.Firstly,the correlation betw...In order to improve the detection accuracy of Doppler asymmetric spatial heterodyne(DASH)interferometer in harsh temperatures,an opto-mechanical-thermal integration analysis is carried out.Firstly,the correlation between the interference phase and temperature is established according to the working principle and the phase algorithm of the interferometer.Secondly,the optical mechanical thermal analysis model and thermal deformation data acquisition model are designed.The deformation data of the interference module and the imaging optical system at different temperatures are given by temperature load simulation analysis,and the phase error caused by thermal deformation is obtained by fitting.Finally,based on the wind speed error caused by thermal deformation of each component,a reasonable temperature control scheme is proposed.The results show that the interference module occupies the main cause,the temperature must be controlled within(20±0.05)℃,and the temperature control should be carried out for the temperature sensitive parts,and the wind speed error caused by the part is 3.8 m/s.The thermal drift between the magnification of the imaging optical system and the thermal drift of the relative position between the imaging optical system and the detector should occupy the secondary cause,which should be controlled within(20±2)℃,and the wind speed error caused by the part is 3.05 m/s.In summary,the wind measurement error caused by interference module,imaging optical system,and the relative position between the imaging optical system and the detector can be controlled within 6.85 m/s.The analysis and temperature control schemes presented in this paper can provide theoretical basis for DASH interferometer engineering applications.展开更多
Instrument drifts introduce additional phase errors into atmospheric wind measurement of Doppler asymmetric spatial heterodyne spectroscopy (DASH). Aiming at the phase sensitivity of DASH to instrument drifts, in this...Instrument drifts introduce additional phase errors into atmospheric wind measurement of Doppler asymmetric spatial heterodyne spectroscopy (DASH). Aiming at the phase sensitivity of DASH to instrument drifts, in this paper we calculate the optical path difference (OPD) and present an accurate formula of DASH interferogram. By controlling variables in computational ray-tracing simulations and laboratory experiments, it is indicated that initial phase is directly determined by incident wavenumber, OPD offset and field of view (FOV). Accordingly, it is indicated that retrieved phase of DASH is sensitive to slight structural change caused by instrument drift, which provides the proof of necessary-to-track and -correct phase errors from instrument drifts.展开更多
To reduce the error from measurement and retrieval process, a new technology of spatial heterodyne spectroscopy is proposed. The principle of this technology and the instrument spatial het- erodyne spectrometer (SHS...To reduce the error from measurement and retrieval process, a new technology of spatial heterodyne spectroscopy is proposed. The principle of this technology and the instrument spatial het- erodyne spectrometer (SHS) are introduced. The first application of this technology will be for CO2 measurements from space on a high spectral observation satellite. The outstanding measurement principle and the priority of combination of retrieval algorithm and three channels ( O2 A-band, CO2 1.58 μm and 2.06 μm bands) are theoretically analyzed and numerically simulated. Experiments u- sing SHS prototype with low spectral resolution of 0. 4 cm -1are carried out for preliminary valida- tion. The measurements show clear CO2 absorption lines and follow the expected signature with the- ory spectrum, and the retrievals agreed well with GOSAT CO2 products, except a small bias of about 4 × 10 ^-6. The results show that the ability of spatial heterodyne spectroscopy for CO2 detecting is ob- vious, and SHS is a competent sensor.展开更多
A technique for coherent imaging based on spatial frequency heterodyning is described. Three images corresponding to three physical measurements are recorded. For the first measurement, a scene is simply illuminated w...A technique for coherent imaging based on spatial frequency heterodyning is described. Three images corresponding to three physical measurements are recorded. For the first measurement, a scene is simply illuminated with a coherent beam and for measurements 2 and 3, the scene is projected with cosine and sine fringes, respectively. Due to spatial frequency heterodyning, upper and lower side hand information falls in the pass band of the imager. These bands are separated and correct phases and positions are assigned to these bands in the spatial frequency domain. An extension of bandwidth is achieved in the frequency domain and the inverse frequency domain data then give a high resolution coherent image.展开更多
文摘In order to improve the detection accuracy of Doppler asymmetric spatial heterodyne(DASH)interferometer in harsh temperatures,an opto-mechanical-thermal integration analysis is carried out.Firstly,the correlation between the interference phase and temperature is established according to the working principle and the phase algorithm of the interferometer.Secondly,the optical mechanical thermal analysis model and thermal deformation data acquisition model are designed.The deformation data of the interference module and the imaging optical system at different temperatures are given by temperature load simulation analysis,and the phase error caused by thermal deformation is obtained by fitting.Finally,based on the wind speed error caused by thermal deformation of each component,a reasonable temperature control scheme is proposed.The results show that the interference module occupies the main cause,the temperature must be controlled within(20±0.05)℃,and the temperature control should be carried out for the temperature sensitive parts,and the wind speed error caused by the part is 3.8 m/s.The thermal drift between the magnification of the imaging optical system and the thermal drift of the relative position between the imaging optical system and the detector should occupy the secondary cause,which should be controlled within(20±2)℃,and the wind speed error caused by the part is 3.05 m/s.In summary,the wind measurement error caused by interference module,imaging optical system,and the relative position between the imaging optical system and the detector can be controlled within 6.85 m/s.The analysis and temperature control schemes presented in this paper can provide theoretical basis for DASH interferometer engineering applications.
基金Project supported by the National Natural Science Foundation of China (Grant No. 41005019)the Fund from the Chinese Academy of Scieneces for West Yong Scientists (Grant No. XAB 2016A07)the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2019JQ-931).
文摘Instrument drifts introduce additional phase errors into atmospheric wind measurement of Doppler asymmetric spatial heterodyne spectroscopy (DASH). Aiming at the phase sensitivity of DASH to instrument drifts, in this paper we calculate the optical path difference (OPD) and present an accurate formula of DASH interferogram. By controlling variables in computational ray-tracing simulations and laboratory experiments, it is indicated that initial phase is directly determined by incident wavenumber, OPD offset and field of view (FOV). Accordingly, it is indicated that retrieved phase of DASH is sensitive to slight structural change caused by instrument drift, which provides the proof of necessary-to-track and -correct phase errors from instrument drifts.
基金Supported by the National Natural Science Foundation of China(41175037)
文摘To reduce the error from measurement and retrieval process, a new technology of spatial heterodyne spectroscopy is proposed. The principle of this technology and the instrument spatial het- erodyne spectrometer (SHS) are introduced. The first application of this technology will be for CO2 measurements from space on a high spectral observation satellite. The outstanding measurement principle and the priority of combination of retrieval algorithm and three channels ( O2 A-band, CO2 1.58 μm and 2.06 μm bands) are theoretically analyzed and numerically simulated. Experiments u- sing SHS prototype with low spectral resolution of 0. 4 cm -1are carried out for preliminary valida- tion. The measurements show clear CO2 absorption lines and follow the expected signature with the- ory spectrum, and the retrievals agreed well with GOSAT CO2 products, except a small bias of about 4 × 10 ^-6. The results show that the ability of spatial heterodyne spectroscopy for CO2 detecting is ob- vious, and SHS is a competent sensor.
文摘A technique for coherent imaging based on spatial frequency heterodyning is described. Three images corresponding to three physical measurements are recorded. For the first measurement, a scene is simply illuminated with a coherent beam and for measurements 2 and 3, the scene is projected with cosine and sine fringes, respectively. Due to spatial frequency heterodyning, upper and lower side hand information falls in the pass band of the imager. These bands are separated and correct phases and positions are assigned to these bands in the spatial frequency domain. An extension of bandwidth is achieved in the frequency domain and the inverse frequency domain data then give a high resolution coherent image.