Based on the theories and methods of complex network,crude oil trade flows between countries along the Belt and Road(B&R,hereafter)are inserted into the Geo-space of B&R and form a spatial interaction network ...Based on the theories and methods of complex network,crude oil trade flows between countries along the Belt and Road(B&R,hereafter)are inserted into the Geo-space of B&R and form a spatial interaction network which takes the countries as nodes and takes the trade relations as edges.The networked mining and evolution analysis can provide important references for the research on trade relations among the B&R countries and the formulation of trade policy.This paper researches and discusses the construction,statistical analysis,top networks and stability of the crude oil trade network between the B&R countries from 2001 to 2020 from the perspectives of Geo-Computation for Social Sciences(GCSS)and spatial interaction.Firstly,evolutions of out-degree,in-degree,out-strength and in-strength of the top 10 countries in the crude oil trade network are computed and analyzed.Secondly,the top network method is used to explore the evolution characteristics of hierarchical structures.And finally,the sequential evolution characteristics of the crude oil trade network stability are analyzed utilizing the network stability measure method based on the trade relationship autocorrelation function.The analysis results show that Russia has the largest out-degree and out-strength,and China has the largest in-degree and in-strength.The crude oil trade volume of the top 10 import and export networks between 2001—2020 accounts for over 90%of the total trade volume of the crude oil trade network,and the proportion remains relatively stable.However,the stability of the network showed strong fluctuations in 2009,2012 and 2014,which may be closely related to major international events in these years,which could furtherly be used to build a correlation model between network volatility and major events.This paper explores how to construct and analyze the spatial interaction network of crude oil trade and can provide references for trade relations research and trade policy formulation of B&R countries.展开更多
Humanities and Social Sciences(HSS) are undergoing the transformation of spatialization and quantification. Geo-computation, with geoinformatics(including RS: Remote Sensing;GIS: Geographical Information System;GNSS: ...Humanities and Social Sciences(HSS) are undergoing the transformation of spatialization and quantification. Geo-computation, with geoinformatics(including RS: Remote Sensing;GIS: Geographical Information System;GNSS: Global Navigation Satellite System), provides effective computational and spatialization methods and tools for HSS. Spatial Humanities and Geo-computation for Social Sciences(SH&GSS) is a field coupling geo-computation, and geoinformatics, with HSS. This special issue accepted a set of contributions highlighting recent advances in methodologies and applications of SH&GSS, which are related to sentiment spatial analysis from social media data, emotional change spatial analysis from news data, spatial analysis of social media related to COVID-19, crime spatiotemporal analysis, “double evaluation” for Land Use/Land Cover(LUCC), Specially Protected Natural Areas(SPNA) analysis, editing behavior analysis of Volunteered Geographic Information(VGI), electricity consumption anomaly detection, First and Last Mile Problem(FLMP) of public transport, and spatial interaction network analysis for crude oil trade network. Based on these related researches, we aim to present an overview of SH&GSS, and propose some future research directions for SH&HSS.展开更多
The cause-effect associations between geographical phenomena are an important focus in ecological research. Recent studies in structural equation modeling(SEM) demonstrated the potential for analyzing such associati...The cause-effect associations between geographical phenomena are an important focus in ecological research. Recent studies in structural equation modeling(SEM) demonstrated the potential for analyzing such associations. We applied the variance-based partial least squares SEM(PLS-SEM) and geographically-weighted regression(GWR) modeling to assess the human-climate impact on grassland productivity represented by above-ground biomass(AGB). The human and climate factors and their interaction were taken to explain the AGB variance by a PLS-SEM developed for the grassland ecosystem in Inner Mongolia, China. Results indicated that 65.5% of the AGB variance could be explained by the human and climate factors and their interaction. The case study showed that the human and climate factors imposed a significant and negative impact on the AGB and that their interaction alleviated to some extent the threat from the intensified human-climate pressure. The alleviation may be attributable to vegetation adaptation to high human-climate stresses, to human adaptation to climate conditions or/and to recent vegetation restoration programs in the highly degraded areas. Furthermore, the AGB response to the human and climate factors modeled by GWR exhibited significant spatial variations. This study demonstrated that the combination of PLS-SEM and GWR model is feasible to investigate the cause-effect relation in socio-ecological systems.展开更多
基金National Natural Science Foundation of China(No.42171448)Key Laboratory of National Geographic Census and Monitoring,Ministry of Nature Resources(No.2020NGCMZD03)。
文摘Based on the theories and methods of complex network,crude oil trade flows between countries along the Belt and Road(B&R,hereafter)are inserted into the Geo-space of B&R and form a spatial interaction network which takes the countries as nodes and takes the trade relations as edges.The networked mining and evolution analysis can provide important references for the research on trade relations among the B&R countries and the formulation of trade policy.This paper researches and discusses the construction,statistical analysis,top networks and stability of the crude oil trade network between the B&R countries from 2001 to 2020 from the perspectives of Geo-Computation for Social Sciences(GCSS)and spatial interaction.Firstly,evolutions of out-degree,in-degree,out-strength and in-strength of the top 10 countries in the crude oil trade network are computed and analyzed.Secondly,the top network method is used to explore the evolution characteristics of hierarchical structures.And finally,the sequential evolution characteristics of the crude oil trade network stability are analyzed utilizing the network stability measure method based on the trade relationship autocorrelation function.The analysis results show that Russia has the largest out-degree and out-strength,and China has the largest in-degree and in-strength.The crude oil trade volume of the top 10 import and export networks between 2001—2020 accounts for over 90%of the total trade volume of the crude oil trade network,and the proportion remains relatively stable.However,the stability of the network showed strong fluctuations in 2009,2012 and 2014,which may be closely related to major international events in these years,which could furtherly be used to build a correlation model between network volatility and major events.This paper explores how to construct and analyze the spatial interaction network of crude oil trade and can provide references for trade relations research and trade policy formulation of B&R countries.
基金National Natural Science Foundation of China(No.42171448)。
文摘Humanities and Social Sciences(HSS) are undergoing the transformation of spatialization and quantification. Geo-computation, with geoinformatics(including RS: Remote Sensing;GIS: Geographical Information System;GNSS: Global Navigation Satellite System), provides effective computational and spatialization methods and tools for HSS. Spatial Humanities and Geo-computation for Social Sciences(SH&GSS) is a field coupling geo-computation, and geoinformatics, with HSS. This special issue accepted a set of contributions highlighting recent advances in methodologies and applications of SH&GSS, which are related to sentiment spatial analysis from social media data, emotional change spatial analysis from news data, spatial analysis of social media related to COVID-19, crime spatiotemporal analysis, “double evaluation” for Land Use/Land Cover(LUCC), Specially Protected Natural Areas(SPNA) analysis, editing behavior analysis of Volunteered Geographic Information(VGI), electricity consumption anomaly detection, First and Last Mile Problem(FLMP) of public transport, and spatial interaction network analysis for crude oil trade network. Based on these related researches, we aim to present an overview of SH&GSS, and propose some future research directions for SH&HSS.
基金supported by the National Natural Science Foundation of China (41371371)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA05050402)
文摘The cause-effect associations between geographical phenomena are an important focus in ecological research. Recent studies in structural equation modeling(SEM) demonstrated the potential for analyzing such associations. We applied the variance-based partial least squares SEM(PLS-SEM) and geographically-weighted regression(GWR) modeling to assess the human-climate impact on grassland productivity represented by above-ground biomass(AGB). The human and climate factors and their interaction were taken to explain the AGB variance by a PLS-SEM developed for the grassland ecosystem in Inner Mongolia, China. Results indicated that 65.5% of the AGB variance could be explained by the human and climate factors and their interaction. The case study showed that the human and climate factors imposed a significant and negative impact on the AGB and that their interaction alleviated to some extent the threat from the intensified human-climate pressure. The alleviation may be attributable to vegetation adaptation to high human-climate stresses, to human adaptation to climate conditions or/and to recent vegetation restoration programs in the highly degraded areas. Furthermore, the AGB response to the human and climate factors modeled by GWR exhibited significant spatial variations. This study demonstrated that the combination of PLS-SEM and GWR model is feasible to investigate the cause-effect relation in socio-ecological systems.