The main purpose of this paper is to perform a numerical analysis of the Neutron Spatial Kinetic Equations, subject to transients of the External Neutron Source, by applying the Implicit Euler Method as well as the Ru...The main purpose of this paper is to perform a numerical analysis of the Neutron Spatial Kinetic Equations, subject to transients of the External Neutron Source, by applying the Implicit Euler Method as well as the Runge-Kutta Method in order to check which methods are best applicable in transients caused by External Neutron Source. For this purpose, a one-dimensional ADS reactor with a constant external source was simulated based on the geometry of ANL-BSS-6 reactor for benchmark effects.展开更多
In this work,two approaches,based on the certified Reduced Basis method,have been developed for simulating the movement of nuclear reactor control rods,in time-dependent non-coercive settings featuring a 3D geometrica...In this work,two approaches,based on the certified Reduced Basis method,have been developed for simulating the movement of nuclear reactor control rods,in time-dependent non-coercive settings featuring a 3D geometrical framework.In particular,in a first approach,a piece-wise affine transformation based on subdomains division has been implemented for modelling the movement of one control rod.In the second approach,a“staircase”strategy has been adopted for simulating themovement of all the three rods featured by the nuclear reactor chosen as case study.The neutron kinetics has been modelled according to the so-called multi-group neutron diffusion,which,in the present case,is a set of ten coupled parametrized parabolic equations(two energy groups for the neutron flux,and eight for the precursors).Both the reduced order models,developed according to the two approaches,provided a very good accuracy comparedwith high-fidelity results,assumed as“truth”solutions.At the same time,the computational speed-up in the Online phase,with respect to the fine“truth”finite element discretization,achievable by both the proposed approaches is at least of three orders of magnitude,allowing a real-time simulation of the rod movement and control.展开更多
基金the support provided by the Fundacao Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro(FAPERJ),Brazil.
文摘The main purpose of this paper is to perform a numerical analysis of the Neutron Spatial Kinetic Equations, subject to transients of the External Neutron Source, by applying the Implicit Euler Method as well as the Runge-Kutta Method in order to check which methods are best applicable in transients caused by External Neutron Source. For this purpose, a one-dimensional ADS reactor with a constant external source was simulated based on the geometry of ANL-BSS-6 reactor for benchmark effects.
基金We acknowledge CINECA and Regione Lombardia LISA computational initiative,for the availability of high performance computing resources and support.G.Rozza acknowledges INDAM-GNCS national activity group and NOFYSAS program of SISSA.
文摘In this work,two approaches,based on the certified Reduced Basis method,have been developed for simulating the movement of nuclear reactor control rods,in time-dependent non-coercive settings featuring a 3D geometrical framework.In particular,in a first approach,a piece-wise affine transformation based on subdomains division has been implemented for modelling the movement of one control rod.In the second approach,a“staircase”strategy has been adopted for simulating themovement of all the three rods featured by the nuclear reactor chosen as case study.The neutron kinetics has been modelled according to the so-called multi-group neutron diffusion,which,in the present case,is a set of ten coupled parametrized parabolic equations(two energy groups for the neutron flux,and eight for the precursors).Both the reduced order models,developed according to the two approaches,provided a very good accuracy comparedwith high-fidelity results,assumed as“truth”solutions.At the same time,the computational speed-up in the Online phase,with respect to the fine“truth”finite element discretization,achievable by both the proposed approaches is at least of three orders of magnitude,allowing a real-time simulation of the rod movement and control.