BACKGROUND: Calcitonin gene-related peptide (CGRP) and nerve growth actor (NGF) cam improve spatial learning and memory abilities of rats with cerebral ischemia/reperfusion; however, the effect of combination of them ...BACKGROUND: Calcitonin gene-related peptide (CGRP) and nerve growth actor (NGF) cam improve spatial learning and memory abilities of rats with cerebral ischemia/reperfusion; however, the effect of combination of them on relieving learning and memory injury following cerebral ischemia/reperfusion should be further studied. OBJECTIVE: To study the effects of exogenous CGRP and NGF on learning and memory abilities of rats with focal cerebral ischemia/reperfusion. DESIGN: Randomized controlled animal study. SETTING: Department of Neurosurgery, the Second Hospital of Xiamen; Department of Neurosurgery, the Second Affiliated Hospital of China Medical University; Department of Neurobiology, Basic Medical College of China Medical University. MATERIALS: A total of 30 healthy male SD rats, aged 8 weeks, of clean grade, weighing 250-300 g, were provided by Experimental Animal Department of China Medical University. All rats were randomly divided into sham-operation group, ischemia/reperfusion group and treatment group with 10 in each group. The main reagents were detailed as the follows: 100 g/L chloral hydrate, 0.5 mL CGRP (2 mg/L, Sigma Company, USA), and NGF (1× 106 U/L, 0.5 mL, Siweite Company, Dalian). METHODS: The experiment was carried out in the Department of Neurobiology, Basic Medical College of China Medical University from February to July 2005. Rat models of middle cerebral artery occlusion were established by method of occlusion, 2 hours after that rats were anesthetized and the thread was slightly drawn out for 10 mm under direct staring to perform reperfusion. Rats in the ischemia/reperfusion group received intraperitoneal injection of 1 mL saline via the abdomen at two hours later, while rats in the treatment group at 2 hours later received intraperitoneal injection of 2 mg/L CGRP (0.5 mL) and 1×106 U/L NGF (0.5 mL) once a day for 10 successive days. First administration was accomplished within 15 minutes after ischemia/reperfusion. Rats in the sham-operation group were separated of the vessels without occlusion or administration. The neural function was evaluated with Zea Longa 5-grade scale. Animals with the score of one, two and three points received Morris water-maze test to measure searching time on platform (omitting platform-escaping latency). Meanwhile, leaning and memory abilities of animals were reflected through testing times of passing through platform per minute. MAIN OUTCOME MEASURES: Experimental results of omitting platform-escaping latency and spatial probe. RESULTS: Three and two rats in the ischemia/reperfusion group and treatment group respectively were not in accordance with the criteria in the process, and the rest were involved in the final analysis. ① Comparisons of platform-escaping latency during Morris water-maze test in all the three groups: Ten days after modeling, the platform-escaping latency in the ischemia/reperfusion group was obviously longer than that in sham-operation group (P < 0.01), and was significantly shorter than that in the treatment group (P < 0.01). ② Comparisons of times of passing through platform in all the three groups: Times of passing through platform were remarkably less in the ischemia/reperfusion group than those in the sham-operation group [(1.79±0.39), (4.30±0.73) times/minute, P < 0.01], and those were markedly more in the treatment group than the ischemia/reperfusion group [(3.16±1.03), (1.79±0.39) times/minute, P < 0.01]. CONCLUSION: CGRP and NGF are capable of ameliorating the abilities of spatial learning and memory in MCAO rats, which indicates that CGRP and NGF can protect ischemic neurons.展开更多
Rhesus monkey neural stem cells are capable of differentiating into neurons and glial cells. Therefore, neural stem cell transplantation can be used to promote functional recovery of the nervous system. Rhesus monkey ...Rhesus monkey neural stem cells are capable of differentiating into neurons and glial cells. Therefore, neural stem cell transplantation can be used to promote functional recovery of the nervous system. Rhesus monkey neural stem cells (1 ×10^5 cells/μL) were injected into bilateral hippocampi of rats with hippocampal lesions. Confocal laser scanning microscopy demonstrated that green fluorescent protein-la- beled transplanted cells survived and grew well. Transplanted cells were detected at the lesion site, but also in the nerve fiber-rich region of the cerebral cortex and corpus callosum. Some transplanted cells differentiated into neurons and glial cells clustering along the ventricular wall, and integrated into the recipient brain. Behavioral tests revealed that spatial learning and memory ability improved, indicating that rhesus monkey neural stem cells noticeably improve spatial learning and memory abilities in rats with hippocampal lesions.展开更多
文摘BACKGROUND: Calcitonin gene-related peptide (CGRP) and nerve growth actor (NGF) cam improve spatial learning and memory abilities of rats with cerebral ischemia/reperfusion; however, the effect of combination of them on relieving learning and memory injury following cerebral ischemia/reperfusion should be further studied. OBJECTIVE: To study the effects of exogenous CGRP and NGF on learning and memory abilities of rats with focal cerebral ischemia/reperfusion. DESIGN: Randomized controlled animal study. SETTING: Department of Neurosurgery, the Second Hospital of Xiamen; Department of Neurosurgery, the Second Affiliated Hospital of China Medical University; Department of Neurobiology, Basic Medical College of China Medical University. MATERIALS: A total of 30 healthy male SD rats, aged 8 weeks, of clean grade, weighing 250-300 g, were provided by Experimental Animal Department of China Medical University. All rats were randomly divided into sham-operation group, ischemia/reperfusion group and treatment group with 10 in each group. The main reagents were detailed as the follows: 100 g/L chloral hydrate, 0.5 mL CGRP (2 mg/L, Sigma Company, USA), and NGF (1× 106 U/L, 0.5 mL, Siweite Company, Dalian). METHODS: The experiment was carried out in the Department of Neurobiology, Basic Medical College of China Medical University from February to July 2005. Rat models of middle cerebral artery occlusion were established by method of occlusion, 2 hours after that rats were anesthetized and the thread was slightly drawn out for 10 mm under direct staring to perform reperfusion. Rats in the ischemia/reperfusion group received intraperitoneal injection of 1 mL saline via the abdomen at two hours later, while rats in the treatment group at 2 hours later received intraperitoneal injection of 2 mg/L CGRP (0.5 mL) and 1×106 U/L NGF (0.5 mL) once a day for 10 successive days. First administration was accomplished within 15 minutes after ischemia/reperfusion. Rats in the sham-operation group were separated of the vessels without occlusion or administration. The neural function was evaluated with Zea Longa 5-grade scale. Animals with the score of one, two and three points received Morris water-maze test to measure searching time on platform (omitting platform-escaping latency). Meanwhile, leaning and memory abilities of animals were reflected through testing times of passing through platform per minute. MAIN OUTCOME MEASURES: Experimental results of omitting platform-escaping latency and spatial probe. RESULTS: Three and two rats in the ischemia/reperfusion group and treatment group respectively were not in accordance with the criteria in the process, and the rest were involved in the final analysis. ① Comparisons of platform-escaping latency during Morris water-maze test in all the three groups: Ten days after modeling, the platform-escaping latency in the ischemia/reperfusion group was obviously longer than that in sham-operation group (P < 0.01), and was significantly shorter than that in the treatment group (P < 0.01). ② Comparisons of times of passing through platform in all the three groups: Times of passing through platform were remarkably less in the ischemia/reperfusion group than those in the sham-operation group [(1.79±0.39), (4.30±0.73) times/minute, P < 0.01], and those were markedly more in the treatment group than the ischemia/reperfusion group [(3.16±1.03), (1.79±0.39) times/minute, P < 0.01]. CONCLUSION: CGRP and NGF are capable of ameliorating the abilities of spatial learning and memory in MCAO rats, which indicates that CGRP and NGF can protect ischemic neurons.
基金supported by the National Natural Science Foundation of China,No.31571109,81460261the Chinese-Finnish Joint Project Fund,No.813111172+2 种基金a grant from the Yunnan Key Program of Science and Technology of China,No.2014FC005the Key Science and Technology Research Project Fund of Hainan Province of China,No.ZDYF2016156the National Clinical Key Subject Construction Project Fund of China
文摘Rhesus monkey neural stem cells are capable of differentiating into neurons and glial cells. Therefore, neural stem cell transplantation can be used to promote functional recovery of the nervous system. Rhesus monkey neural stem cells (1 ×10^5 cells/μL) were injected into bilateral hippocampi of rats with hippocampal lesions. Confocal laser scanning microscopy demonstrated that green fluorescent protein-la- beled transplanted cells survived and grew well. Transplanted cells were detected at the lesion site, but also in the nerve fiber-rich region of the cerebral cortex and corpus callosum. Some transplanted cells differentiated into neurons and glial cells clustering along the ventricular wall, and integrated into the recipient brain. Behavioral tests revealed that spatial learning and memory ability improved, indicating that rhesus monkey neural stem cells noticeably improve spatial learning and memory abilities in rats with hippocampal lesions.